2650 HARDWARE SPECIFICATIONS MANUAL

PREFACE

This manual contains the complete specifications for the Signetics 2650 processor. It describes the instruction set, interface signals, the internal organization, and the electrical characteristics. Examples of memory and I/O system organizations that may be used with the processor are discussed.

CONTENTS

I	INTRODUC	TION														5
		AL FEATURES														7
		ATIONS														8
11		ORGANIZATI														9
		AL REGISTER														11
		AM STATUS WO														12
		Y ORGANIZAT														17
Ш		E														19
	SIGNALS															21
	SIGNAL	TIMING														26
		ry Read Timing														26
		ry Write Timing														27
		Output Timing														28
		ıl Times														28
		ICAL CHARAC														29
	INTERF	ACE SIGNALS														31
		FIGURATION														31
IV	FEATURES															33
	INPUT/C	OUTPUT FACIL	ITIE	S												
		nd Sense I/O .														
		xtended I/O .														
		ded I/O														
		ry I/O														
		ÚPT MECHANI														37
		TINE LINKAG														
		ION CODE USA														39
		JP PROCEDUR														
V	INSTRUCT															41
	ADDRES	SSING MODES														43
		er Addressing .														43
		diate Addressing														43
		ve Addressing .														44
		ute Addressing f														
		ute Addressing f														45
		ct Addressing .														46
		ction Format E														
		CTION FORMA														47
	DETAIL	ED PROCESSO	RIN	ST	RU	CT	ГΙΟ	NS	;							48
APP	ENDIX A	MEMORY INT	ERF	ACI	E	X	٩M	PL	Ε			-			1	24
APP	ENDIX B	I/O INTERFAC	E E	ΧAΙ	ИP	LE	:								1	25
APP	ENDIX C	INSTRUCTION	IS, A	DD	ΙT	10	NΑ	LI	NF	-01	RM	ΑТ	10	N	1	26
APP	ENDIX D	INSTRUCTION	I SU	ΜМ	ΑF	łΥ									1	28
		ALPHABET													1	28
		NUMERIC L														31
												•	•	•		
		ORGANIZE	שט"	rh	UΝ	IU I	ΗÜ	'IN							- 1	34

Copyright April 1975 Signetics Corporation

Signetics Corporation reserves the right to make changes in the products described in this book in order to improve design or performance.

Signetics Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

CHAPTER I INTRODUCTION

FEATURES

GENERAL PURPOSE PROCESSOR SINGLE CHIP FIXED INSTRUCTION SET PARALLEL 8-BIT BINARY OPERATIONS 40 PIN DUAL IN-LINE PACKAGE

N-CHANNEL SILICON GATE MOS TECHNOLOGY TTL COMPATIBLE INPUTS AND OUTPUTS SINGLE POWER SUPPLY OF +5 VOLTS SEVEN GENERAL PURPOSE REGISTERS RETURN ADDRESS STACK, 8 DEEP, ON CHIP

32K BYTE ADDRESSING RANGE SEPARATE ADDRESS AND DATA LINES VARIABLE LENGTH INSTRUCTIONS OF 1, 2, OR 3 BYTES 75 INSTRUCTIONS MACHINE CYCLE TIME OF $2.4\mu \rm sec$ AT CLOCK FREQUENCY OF $1.25~\rm MHz$

DIRECT INSTRUCTIONS TAKE 2, 3 or 4 CYCLES SINGLE PHASE TTL LEVEL CLOCK INPUT STATIC LOGIC TRI-STATE OUTPUT BUSSES REGISTER, IMMEDIATE, RELATIVE, ABSOLUTE INDIRECT, AND INDEXED ADDRESSING MODES VECTOR INTERRUPT FORMAT

GENERAL FEATURES

The 2650 processor is a general purpose, single chip, fixed instruction set, parallel 8-bit binary processor. A general purpose processor can perform any data manipulations through execution of a stored sequence of machine instructions. The processor has been designed to closely resemble conventional binary computers, but executes variable length instructions of one to three bytes in length. BCD Arithmetic is made possible through use of a special "DAR" machine instruction.

The 2650 is manufactured using Signetics' N-channel silicon gate MOS technology. N-channel provides high carrier mobility for increased speed and also allows the use of a single 5 volt power supply. Silicon gate provides for better density and speed. Standard 40 pin dual in-line packages are used for the processor.

The 2650 contains a total of seven general purpose registers, each eight bits long. They may be used as source or destination for arithmetic operations, as index registers, and for I/O transfers.

The processor can address up to 32,768 bytes of memory in four pages of 8,192 bytes each. The processor instructions are one, two, or three bytes long, depending on the instruction. Variable length instructions tend to conserve memory space since a one-or two-byte instruction may often be used rather than a three byte instruction. The first byte of each instruction always specifies the operation to be performed and the addressing mode to be used. Most instructions use six of the first eight bits for this purpose, with the remaining two bits forming the register field. Some instructions use the full eight bits as an operation code.

The most complex direct instruction is three bytes long and takes 9.6 microseconds to execute. This figure assumes that the processor is running at its maximum clock rate, and has an associated memory with cycle and access times of one microsecond or less. The fastest instruction executes in 4.8 microseconds.

The clock input to the processor is a single phase pulse train and uses only one interface pin. It requires a normal TTL voltage swing, so no special clock driver is required.

The Data Bus and Address signals are tri-state to provide convenience in system design. Memory and I/O interface signals are asynchronous so that Direct Memory Access (DMA) and multiprocessor operations are easy to implement.

The 2650 has a versatile set of addressing modes used for locating operands for operations. They are described in detail in the INSTRUCTIONS section of this manual.

The interrupt mechanism is implemented as a single level, address vectoring type. Address vectoring means that an interrupting device can force the processor to execute code at a device determined location in memory. The interrupt mechanism is described in detail in the FEATURES section of this manual.

APPLICATIONS

The ability of the semi-conductor industry to manufacture complete general purpose processors on single chips represents a significant technological advance which should prove to be of great benefit to digital systems manufacturers. In terms of chip size and density of transistors, the processors are simply extensions of the continually evolving MOS technology. But in terms of function provided, a significant threshold has been crossed.

By allowing designers to convert from hardware logic to programmed logic, the integrated processor provides several important advantages.

- 1. Logic functions may be implemented in memory bits instead of logic gates. The user then has greater access to the advantages of memory circuits. Memories use patterned circuitry and thus provide greater density and therefore greater economy.
- 2. Random logic implementations of complex functions are highly specialized and cannot be used in other applications. They are not often used in large volume. Programmed logic, on the other hand, relies on general purpose processor and memory circuits that are used in many applications. Thus, economies of volume are available for both the user and the manufacturer.
- 3. Because the functional specialization resides in the user's program rather than the hardware logic, changes, corrections and additions can be much easier to make and can be accomplished in a much shorter time.
- 4. With the programmed logic approach it is often possible to add new features and create new products simply by writing new programs.
- 5. The design cycle of a system using programmed logic can be significantly shorter than a similar system that attempts to use custom random logic. The debugging cycle is also greatly compressed.

A general purpose processor designed to implement programmed logic has many characteristics that allow it to do conventional computer operations as well. Many applications will specialize in programmed logic or in data processing, but some will take advantage of both areas. In a line printer application, for example, a processor can act primarily as a controller handling the housekeeping duties, control sequencing and data interfacing for the printer It also might buffer the data or do some code conversions, but that is not its primary duty. On the other hand, in a text editing intelligent terminal, the processor is mainly concerned with data manipulation since it handles code translations, display paging, insertions, deletions, line justification, hyphenation, etc.

A point-of-sale type of terminal represents an application that combines both control and data processing activities for the processor. Coordinating the activities of the various devices and displays that make up the terminal is an important part of the job, as are the calculations that are essential to the operation of the machine.

CHAPTER II INTERNAL ORGANIZATION

INTERNAL REGISTERS

The block diagram for the 2650 shows the major internal components and the data paths that interconnect them. In order for the processor to execute an instruction, it performs the following general steps:

- 1. The Instruction Address Register provides an address for memory.
- 2. The first byte of an instruction is fetched from memory and stored in the Instruction Register.
- 3. The Instruction Register is decoded to determine the type of instruction and the addressing mode.
- 4. If an operand from memory is required, the operand address is resolved and loaded into the Operand Address Register.
- 5. The operand is fetched from memory and the operation is executed.
- 6. The first byte of the next instruction is fetched.

The Instruction Register (IR) holds the first byte of each instruction and directs the subsequent operations required to execute each instruction. The IR contents are decoded and used in conjunction with the timing information to control the activation and sequencing of all the other elements on the chip. The Holding Register (HR) is used in some multiple-byte instructions to contain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data manipulation operations, including Load, Store, Add, Subtract, And, Inclusive Or, Exclusive Or, Compare, Rotate, Increment and Decrement. It contains and controls the Carry bit, the Overflow bit, the Interdigit Carry and the Condition Code Register.

The Register Stack contains six registers that are organized into two banks of three registers each. The Register Select bit (RS) picks one of the two banks to be accessed by instructions. In order to accommodate the register-to-register instructions, register zero (RO) is outside the array. Thus, register zero is always available along with one set of three registers.

The Address Adder (AA) is used to increment the instruction address and to calculate relative and indexed addresses.

The Instruction Address Register (IAR) holds the address of the next instruction byte to be accessed. The Operand Address Register (OAR) stores operand addresses and sometimes contains intermediate results during effective address calculations.

The Return Address Stack (RAS) is an eight level, Last In, First Out (LIFO) storage which receives the return address whenever a Branch-to-Subroutine instruction is executed. When a Return instruction is executed, the RAS provides the last return address for the processor's IAR. The stack contains eight levels of storage so that subroutines may be nested up to eight levels deep. The Stack Pointer (SP) is a three bit wraparound counter that indicates the next available level in the stack. It always points to the current address.

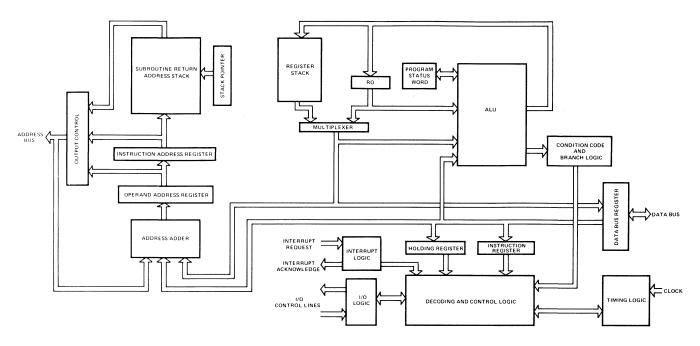


Figure II-1 SIGNETICS 2650 BLOCK DIAGRAM

PROGRAM STATUS WORD

The Program Status Word (PSW) is a special purpose register within the processor that contains status and control bits. It is 16 bits long and is divided into two bytes called the Program Status Upper (PSU) and the Program Status Lower (PSL).

The PSW bits may be tested, loaded, stored, preset or cleared using the instructions which effect the PSW. The sense bit, however, cannot be set or cleared because it is directly connected to pin #1.

PSU	7	6	5	4	3	2	1	0
	S	F	II	Not Used	Not Used	SP2	SP1	SP0

- S Sense
- F Flag
- II Interrupt Inhibit
- SP2 Stack Pointer Two
- SP1 Stack Pointer One
- SPO Stack Pointer Zero

PSL	7	6	5	4	3	2	1	0
	CC1	CC0	IDC	RS	WC	OVF	сом	С
CC1	Conditio	n Code C	ne					

- CCO Condition Code Zero
- IDC Interdigit Carry
- RS Register Bank Select
- WC With/Without Carry
- OVF Overflow
- COM Logical/Arithmetic Compare
 - C Carry/Borrow

SENSE (S)

The Sense bit in the PSU reflects the logic state of the sense input to the processor at pin #1. The sense bit is not affected by the LPSU, PPSU, or CPSU instructions. When the PSU is tested (TPSU) or stored into register zero (SPSU), bit #7 reflects the state of the sense pin at the time of the instruction execution.

FLAG(F)

The Flag bit is a simple latch that drives the Flag output (pin #40) on the processor.

INTERRUPT INHIBIT (II)

When the Interrupt Inhibit (II) bit is set, the processor will not recognize an incoming interrupt. When interrupts are enabled (II=0), and an interrupt signal occurs, the inhibit bit in the PSU is then automatically set. When a Return-and-Enable instruction is executed, the inhibit bit is automatically cleared.

STACK POINTER (SP)

The three Stack Pointer bits are used to address locations in the Return Address Stack (RAS). The SP designates the stack level which contains the current return address. The three SP bits are organized as a binary counter which is automatically incremented with execution of Branch-to-Subroutine instructions, and decremented with execution of Return instructions.

CONDITION CODE (CC)

The Condition Code is a two bit register which is set by the processor whenever a general purpose register is loaded or modified by the execution of an instruction. Additionally, the CC is set to reflect the relative value of two bytes whenever a compare instruction is executed.

The following table indicates the setting of the Condition Code whenever data is set into a general purpose register. The data byte is interpreted as an 8-bit, two's complement number.

Register Contents	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

For compare instructions the following table summarizes the setting of the CC. The data is compared as two 8-bit absolute numbers if bit #1, the COM bit, of the Program Status Lower byte is set to indicate "logical" compare (COM=1). If the COM bit indicates "arithmetic" (COM=0), the comparison instructions interpret the data bytes as two 8-bit two's complement binary numbers.

Register to Storage	Register to Register		
Compare Instruction	Compare Instruction	CC1	CC0
Reg X Greater Than Storage	Reg 0 Greater Than Reg X	0	1
Reg X Equal to Storage	Reg 0 Equal to Reg X	0	0
Reg X Less Than Storage	Reg 0 Less Than Reg X	1	0

The CC is never set to 11 by normal processor operations, but it may be explicitly set to 11 through LPSL or PPSL instruction execution.

INTERDIGIT CARRY (DC)

For BCD arithmetic operations it is sometimes essential to know if there was a carry from bit #3 to bit #4 during the execution of an arithmetic instruction.

The IDC reflects the value of the Interdigit Carry from the previous add or subtract instruction. After any add or subtract instruction execution, the IDC contains the carry or borrow out of bit #3.

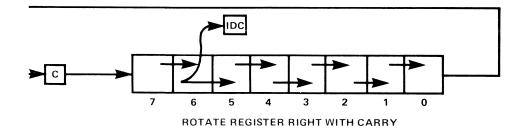
The IDC is also set upon execution of Rotate instructions when the WC bit in the PSW is set. The IDC will reflect the same information as bit #5 of the operand register after the rotate is executed. See figure II-2.

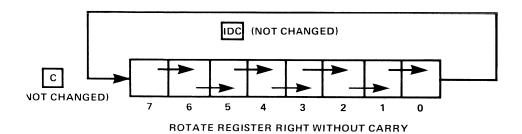
REGISTER SELECT (RS)

There are two banks of general purpose registers with three registers in each bank. The register select bit is used to specify which set of three general purpose registers will be currently used. Register zero is common and is always available to the program. An individual instruction may address only four registers, but the bank select feature effectively expands the available on-chip registers to seven. When the Register Select Bit is "0", registers 1, 2, & 3 in register bank #0 will be accessable, and when the bit is "1", registers 1, 2, & 3 in register bank #1 will be accessable.

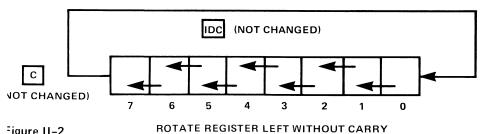
WITH/WITHOUT CARRY (WC)

This bit controls the execution of the add, the subtract and the rotate instructions.


Whenever an add or a subtract instruction executes, the following bits are either set or cleared: Carry/Borrow (C), Overflow (OVF), and Interdigit Carry (IDC). These bits are set or reset without regard to the value of the WC bit. However, when WC=1, the final value of the carry bit affects the result of an add or a subtract instruction, i.e., the carry bit is either added (add instruction) or subtracted (subtract instruction) from the ALU.


Whenever a rotate instruction executes with WC=0, only the eight bits of the rotated register are affected. However, when WC=1, the following bits are also affected: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry (IDC). The carry/borrow bit is combined with the 8-bit register to make a nine-bit rotate (see Figure II-2). The overflow bit is set whenever the sign bit (bit 7) of the rotated register changes its value, i.e., from a zero (0) to a one (1) or from a one (1) to a zero (0). The interdigit carry bit is set to the new value of bit 5 of the rotated register.

OVERFLOW (OVF)


The overflow bit is set during add or subtract instruction executions whenever the two initial operands have the same sign but the result has a different sign. Operands with different signs cannot cause overflow. Example: A binary +124 (01111100) added to a binary +64 (01000000) produces a result of (10111100) which is interpreted in two's complement form as a -68. The true answer would be 188, but that answer cannot be contained in the set of 8-bit, two's complement numbers used by the processor, so the OVF bit is set.

Rotate instructions also cause OVF to be set whenever the sign of the rotated byte changes.

igure II-2

COMPARE (COM)

The compare control bit determines the type of comparison that is executed with the Compare instructions. Either logical or arithmetic comparisons may be made. The arithmetic compare assumes that the comparison s between 8-bit, two's complement numbers. The logical compare assumes that the comparison is between 8-bit positive binary numbers. When COM is set to 1, the comparisons will be logical, and when COM is set to 0, the comparisons will be arithmetic. See Condition Code (CC).

CARRY (C)

The Carry bit is set by the execution of any add or subtract instruction that results in a carry or borrow out of the high order bit of the ALU. The carry bit is set to 1 by an add instruction that generates a carry, and a subtract instruction that does not generate a borrow. Inversely, an add that does not generate a carry causes the C bit to be cleared, and a subtract instruction that generates a borrow also clears the carry bit.

Even though a borrow is indicated by a zero in the Carry bit, the processor will correctly interpret the zero during subtract with borrow operations as in the following table.

Low Order bit Minuend	Low Order bit Subtrahend	Carry bit Borrow bit	Low Order Bit Result
0	0	0	1
0	0	-1	О
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

The carry bit may also be set or cleared by rotate instructions as described earlier under "With/Without Carry".

To perform an Add with Carry or a Subtract with Borrow, the WC bit must be set.

MEMORY ORGANIZATION

The 2650 has a maximum memory addressing capability of 0_{10} —32,767₁₀ locations. As may be seen in the INSTRUCTIONS section of this manual, most direct addressing instructions have thirteen bits allocated for the direct address. Since thirteen bits can only address locations 0_{10} —8,191₁₀, a paging system was implemented to accommodate the entire address range.

The memory may be thought of as being divided into four pages of 8,192 bytes each. The addresses in each page range as in the following chart:

	START ADDRESS	END ADDRESS	
page 0	000000000000000000000000000000000000000	0011111111111111	0 ₁₀ —8191 ₁₀
page 1	0100000000000000	011111111111111	8192 ₁₀ —16,383 ₁₀
page 2	1000000000000000	101111111111111	16,384 ₁₀ —24,575 ₁₀
page 3	11000000000000000	1111111111111111	24,576 ₁₀ —32,767 ₁₀

The low order 13-bits in every page range through the same set of numbers. These 13-bits are the same 13-bits addressed by non-branch instructions and are also the same 13-bits which are brought out of the 2650 on the address lines ADR0-ADR12.

The high order two bits of the 15-bit address are known as the page bits. The page bits when examined by themselves also represent, in binary, the number of the memory page. Thus, the address $\underline{01}000001101101$ is known as address location 109_{10} in page 1. The page bits, corresponding to ADR13 and ADR14 are brought out of the 2650 on pins 19 & 18. These bits may be used for memory access when more than 8,192 bytes of memory are connected.

There are no instructions to explicitly set the page bits. They may be set through execution of direct or indirect, branch or branch-to-subroutine instructions. It may be seen that these instructions (see INSTRUCTION Section) have 15-bits allocated for address and when such an instruction is executed, the two high order address bits are set into the page bit latches in the 2650 processor and will appear on ADR13 and ADR14 during memory accesses until they are specifically changed.

For memory access from non-branch instructions, the 13-bit direct address will address the corresponding location within the current page only. However, the non-branch memory access instruction may access any byte in any page through indirect addressing which provides the full 15-bit address. In the case of non-branch instructions, the page bits are only temporarily changed to correspond to the high order two bits of the 15-bit indirect address used to fetch the argument byte. Immediately after the memory access, ADR13 & ADR14 will revert to their previous value.

The consequences of this page address system may be summarized by the following statements.

- 1. The RESET signal clears both page latches, i.e., ADR13 & ADR14 are cleared to zero.
- 2. All non-branch, direct memory access instructions address memory within the current page.
- 3. All non-branch, memory access instructions may access any byte of addressable memory through use of indirect addressing which temporarily changes the page bits for the argument access, but which revert back to their previous state immediately following instruction execution.
- 4. All direct and indirect addressing branch instructions set the page bits to correspond to the high order two bits of the 15 bit address.
- 5. Programs may not flow across page boundaries, they must branch to set the page bits.
- 6. Interrupts always drive the processor to page zero.

CHAPTER III INTERFACE

SIGNALS

RESET

The RESET signal is used to cause the 2650 to begin processing from a known state. RESET will normally be used to initialize the processor after power-up or to restart a program. RESET clears the Interrupt Inhibit control bit, clears the internal interrupt-waiting signal, and initializes the IAR to zero. RESET is normally low during program execution, and must be driven high to activate the RESET function. The leading and trailing edges may be asynchronous with respect to the clock. The RESET signal must be at least three clock periods long. If RESET alone is used to initiate processing, the first instruction will be fetched from memory location page zero byte zero after the RESET signal is removed. Any instruction may be programmed for this location including a Branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with a reset. In this case, the first instruction to be executed will be at the interrupt address.

CLOCK

The clock signal is a positive-going pulse train that determines the instruction execution rate. Three clock periods comprise a processor cycle. Direct instructions are 2, 3, or 4 processor cycles long, depending on the specific type of instruction. Indirect addressing adds two processor cycles to the direct instruction times.

PAUSE

The \overline{PAUSE} input provides a means for temporarily stopping the execution of a program. When \overline{PAUSE} is driven low, the 2650 finishes the instruction in progress and then enters the WAIT state. When \overline{PAUSE} goes high, program execution continues with the next instruction. If \overline{PAUSE} is turned on then off again before the last cycle of the current instruction begins, program execution continues without pause. If both \overline{PAUSE} and \overline{INTREQ} occur prior to the last cycle of the current instruction, the interrupt will be recognized, and an INTACK will be generated immediately following release of the \overline{PAUSE} . The next instruction to be executed will be a ZBSR to service the interrupt.

If an $\overline{\text{INTREQ}}$ occurs while the 2650 is in a WAIT state due to a $\overline{\text{PAUSE}}$, the interrupt will be acknowledged and serviced after the execution of the next normal instruction following release of the $\overline{\text{PAUSE}}$.

INTREQ

The Interrupt Request input (normally high) is a means for external devices to change the flow of program execution. When the processor recognizes an $\overline{\text{INTREQ}}$, i.e., $\overline{\text{INTREQ}}$ is driven low, it finishes the instruction in progress, inserts a ZBSR instruction into the IR, turns on the Interrupt Inhibit bit in the PSU, and then responds with INTACK and OPREQ signals. Upon receipt of INTACK, the interrupting device may raise the $\overline{\text{INTREQ}}$ line and present a data byte to the processor on the DBUS. The required byte takes the same form as the second byte of a ZBSR instruction. Thus, the interrupt initiated Branch-to-Subroutine instruction may have a relative target address anywhere within the first or last 64 bytes of memory page 0. If indirect addressing is specified, a branch to any location in addressable memory is possible.

For devices that do not need the flexibility of the multiple target addresses, a byte of eight zeroes may be presented and will cause a direct subroutine branch to memory location zero in page zero. The relative address presented by the interrupting device is handled with a normal I/O read sequence using the usual interface control signals. The addition of the INTACK signal distinguishes the interrupt address operation from other operations that may take place as part of the execution of the interrupted instruction. At the same time that it acknowledges the $\overline{\text{INTREQ}}$, the processor automatically sets the bit that inhibits recognition of further interrupts. The Interrupt Inhibit bit may be cleared anytime during the interrupt service routine, or a Return-and-Enable instruction may be used to enable interrupts upon leaving the routine. If an $\overline{\text{INTREQ}}$ is waiting when the Interrupt Inhibit bit is cleared, it will be recognized and processed immediately without the execution of an intervening instruction.

OPACK

The Operation Acknowledge signal is a reply from external memory or I/O devices as a response to the Operation Request signal from the processor. OPREQ is used to initiate an external operation. The affected external device indicates to the processor that the operation is complete by turning on the \overline{OPACK} signal. This procedure allows asynchronous functioning of external devices.

If a Memory operation is initiated by the processor, the memory system will provide an OPACK when the requested memory data is valid on the Data Bus. If an I/O operation is initiated by the processor, the addressed I/O device may respond with an OPACK as soon as the write data is accepted from the Data Bus, or after the read operation is completed. However, in order to avoid slowing down the processor when using memories or I/O devices that are just fast enough to keep the processor operating at full speed the OPACK signal must be returned before the external operation is completed. Any OPACK that is returned within 600 nsec. following an OPREQ will not delay the processor. Data from a read operation can return up to 1000 nsec. after an OPREQ is sent and still be accepted by the processor without causing delays. If all devices will always respond within these time limits, the OPACK line may be permanently connected in the ON (low) state. Whenever an OPACK is not available within that time, the processor will delay instruction execution until the first clock following receipt of the OPACK. All output line conditions remain unchanged during the delay and the processor does not enter the WAIT state. OPACK is true in the low state and false in the high state.

SENSE

The SENSE line provides an input line to the 2650 that is independent of the normal I/O Bus structures. The SENSE signal is connected directly to one of the bits in the Program Status Word. It may be stored or tested by an executing program. When a store (SPSU) or test (TPSU) instruction is executed, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques the SENSE signal may be used to implement a direct serial data input channel, or it may be used to present any bit of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method of communicating data in or out of the 2650 Processor as neither address decoding nor synchronization with other processor signals is necessary.

ADREN

The Address Enable signal allows external control of the tri-state address outputs (ADR0-ADR12). When $\overline{\text{ADREN}}$ is driven high, the address lines are switched to their third state and show a high output impedance. This feature allows wired-OR connections with other signals. The ADR13 and ADR14 lines which are multiplexed with other signals are not affected by this signal.

When a system is not designed to utilize the feature, the \overline{ADREN} input may be connected permanently to a low signal source.

DBUSEN

The Data Bus Enable signal allows external control of the tri-state Data Bus output drivers. When DBUSEN is driven high, the Data Bus will exhibit a high output impedance. This allows wired-OR connection with other signals.

When a system is not designed to utilize this feature, the $\overline{\text{DBUSEN}}$ input may be permanently connected to a low signal source.

DBUS

The Data Bus signals form an 8-bit bi-directional data path in and out of the processor. Memory and I/O operations use the Data Bus to transfer the write or read data to or from memory.

The direction of the data flow on the Data Bus is indicated by the state of the \overline{R}/W line. For Write operations, the output buffers in the processor output data to the bus for use by memory or by external devices. For Read operations, the buffers are disabled and the data condition of the bus is sensed by the processor. The output buffers may also be disabled by the \overline{DBUSEN} signal.

The signals on the data bus are true signals, i.e., a one is a high level and a zero is low.

ADR

The Address signals form a 15 bit path out of the processor, and are used primarily to supply memory addresses during memory operations. The addresses remain valid as long as OPREQ is on so that no external address register is required. For extended I/O operations, the low order eight bits of the ADR lines are used to output the immediate byte of the instruction which typically is interpreted as a device address.

The 13 low order lines of the address are used only for address information. The two high order address lines are multiplexed with I/O control information. During memory operations, the lines serve as memory addresses. During I/O operations they serve as the D/\overline{C} and E/\overline{NE} control lines. Demultiplexing is accomplished through use of the Memory/ \overline{IO} Control line.

The line ADR0 carries the low order address bit, and ADR12 carries the high order address bit. The output drivers may be disabled by the \overline{ADREN} signal.

The signals on the address bus are true, i.e., a one is a high level and a zero is low.

OPREQ

The Operation Request output is the coordinating signal for all external operations. The M/\overline{IO} , \overline{R}/W , E/\overline{NE} , D/\overline{C} and INTACK lines are operation control signals that describe the nature of the external operation when the OPREQ line is true. The DBUS and ADR bus also should not be considered

valid except when OPREQ is in the high, or on state.

No output signals from the processor will change as long as OPREQ is on, with the exception of WRP. OPREQ will stay on until the external operation is complete, as indicated by the \overline{OPACK} input. The processor delays all internal activity following an OPREQ until the \overline{OPACK} signal is received.

INTACK

The Interrupt Acknowledge signal is used by the processor to respond to an external interrupt. When an \overline{INTREQ} is received, the current instruction is completed before the interrupt is serviced. When the processor is ready to accept the interrupt it sets the INTACK to the high, or on, state along with OPREQ. The interrupting device then presents a relative address byte to the DBUS and responds with an \overline{OPACK} signal. \overline{INTREQ} may be turned off anytime following INTACK. INTACK will fall after the processor receives the \overline{OPACK} signal.

M/IO

The Memory/ $\overline{\text{IO}}$ output is one of the operation control signals that defines external operations. M/ $\overline{\text{IO}}$ indicates whether an operation is memory or I/O and should be used to gate Read or Write signals between memory or I/O devices.

The state of M/IO will not change while OPREQ is high.

The high state corresponds to Memory operation, and the low state corresponds to an I/O operation.

R/W

The Read/Write output is one of the operation control signals that defines external operations. \overline{R}/W indicates whether an operation is Read or Write. It controls the nature of the external operation and indicates in which direction the DBUS is pointing. \overline{R}/W should not be considered valid until OPREQ is on and the state of the \overline{R}/W line does not change as long as OPREQ is on.

The high state corresponds to the Write operation, and the low state corresponds to the Read operation.

D/C

The Data/Control Output is an I/O signal which is used to discriminate between the execution of the two types of one byte I/O instructions. There are four one byte I/O instructions; WRTC, WRTD, REDC, REDD. When Read Control or Write Control is executed, the D/\overline{C} line takes on the low state which indicates Control (\overline{C}). When Read Data or Write Data is executed, the D/\overline{C} line takes on the high state, indicating Data (D).

 D/\overline{C} should not be considered valid until (a) OPREQ is on and (b) M/\overline{IO} indicates an I/O operation and (c) E/\overline{NE} indicates a non-extended (one byte) operation. D/\overline{C} is multiplexed with a high order address line. When the M/\overline{IO} line is in the I/O state , the ADR14-D/ \overline{C} line should be interpreted as "D/ \overline{C} ". (When the M/\overline{IO} line is in the M state , the ADR14-D/ \overline{C} line should be interpreted as memory address line #14.)

F/NE

The Extended/Non-Extended output is the operation control signal that is used to discriminate between two byte and one byte I/O operations. Thus, E/\overline{NE} indicates the presence or absence of valid information on the eight low

order address lines during I/O operations.

 E/\overline{NE} should not be considered valid until (a) OPREQ is on and (b) M/\overline{IO} indicates an I/O operation. E/\overline{NE} is multiplexed with a high order address line. When the M/\overline{IO} line is in the I/O state, the ADR13-E/ \overline{NE} line should be interpreted as "E/ \overline{NE} ". (When the M/\overline{IO} line is in the M state, the ADR13-E/ \overline{NE} line should be interpreted as memory address bit #13.)

There are six I/O instructions; REDE, WRTE, REDC, REDD, WRTC, WRTD. When either of the two byte I/O instructions is executed (REDE, WRTE), the E/\overline{NE} line takes on the high state or "Extended" indication. When any of the one byte I/O instructions is executed, the line takes on the low state or "non-extended" indication.

RUN/WAIT

The RUN/ $\overline{\text{WAIT}}$ output signal indicates the Run/Wait Status of the processor. The WAIT state may be entered by executing a HALT instruction or by turning on the $\overline{\text{PAUSE}}$ input. At any other time the processor will be in a RUN state.

When the processor is executing instructions, the line is in the high or RUN state; when in the WAIT state, the line is held low.

The HALT initiated WAIT condition can be changed to RUN by a RE-SET or an interrupt. The \overline{PAUSE} initiated WAIT condition can be changed to RUN by removing the \overline{PAUSE} input.

If a RESET occurs during a \overline{PAUSE} initiated WAIT state and the \overline{PAUSE} remains low; the processor will be reset, fetch one instruction from page zero byte zero and return to the WAIT state. When the \overline{PAUSE} is eventually removed, the previously fetched instruction will be executed.

FLAG

The FLAG output indicates the state of the Flag bit in the PSW. Any change in the Flag bit is reflected by a change in the FLAG output. A one bit in the Flag will give a high level on the FLAG output pin. The LPSU, PPSU, and CPSU instructions can change the state of the Flag bit. The FLAG output is always a valid indication of the state of the Flag bit without regard for the status of the processor or control signals. Changes in the Flag bit are synchronized with the last cycle of the changing instruction.

WRP

The Write Pulse output is a timing signal from the processor that provides a positive-going pulse in the middle of each requested write operation (memory or I/O) and a high level during read operations. The WRP is designed to be used with Signetics 2606 R/W memory circuits to provide a timed Chip Enable signal. For use with memory, it may be gated with the M/\overline{IO} signal to generate a Memory Write Pulse.

Because the WRP pulse occurs during any write operation, it may also be used with I/O write operations where convenient.

SIGNAL TIMING

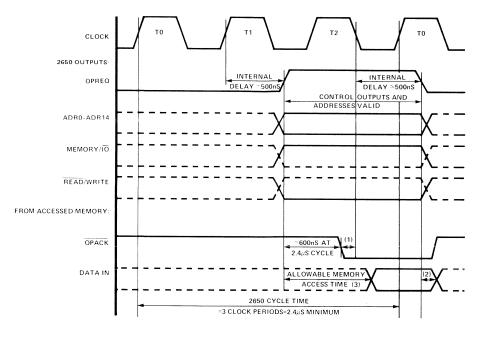
The Clock input to the 2650 provides the basic timing information that the processor uses for all its internal and external operations. The clock rate determines the instruction execution rate, except to the extent that external memories and devices slow down the processor. Each internal processor cycle is composed of three clock periods as shown in Figure III-3, GENERAL TIMING.

OPREQ is the master control signal that coordinates all operations external to the processor. Many of the other signal interactions are related to OPREQ. The timing diagram assumes that the clock periods are constant and that OPACK is returned in time to avoid delaying instruction execution. In that case, OPREQ will be high for 1.5 clock periods (1/2 of tpc) and then will be low for another 1.5 clock periods.

The interface control signals have been designed to implement asynchronous interfaces for both memory and input/output devices. The control signals are relatively simple and provide the following advantages: no external synchronizing is necessary, external devices may run at any data rate up to the processor's maximum I/O data rate, and because data signals are furnished with guard signals the external devices are often relieved of the necessity of latching information such as memory address.

MEMORY READ TIMING

The following signals are involved in the processor's memory read sequence, as shown in Figure III-1.


> **OPREQ** = Operation Request DBUS0-DBUS7* = Data Bus = Address Bus ADR0-ADR12 = Address bit 13 ADR13 ADR14 = Address bit 14 M/\overline{IO} = Memory/Input-Output \overline{R}/W = Read/Write

OPACK* = Operation Acknowledge

The signals marked with an asterisk are sent from the memory device to the processor. The other signals are developed by the processor.

OPREQ is a guard signal which must be valid (high) for the other signals to have meaning. When reading main memory the 2650 simultaneously switches OPREQ to a high state, M/\overline{IO} to M (memory), \overline{R}/W to \overline{R} (Read), and places the memory address on lines ADR0-ADR14. Remember that ADR13 & ADR14 are multiplexed with other signals and must be logically ANDed with OPREQ and M to be interpreted. Of course, ADR13 & ADR14 may be ignored if only page zero (8,192 bytes) is used.

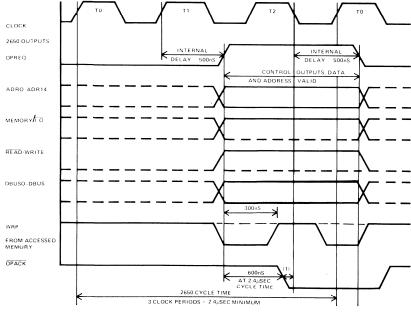
Once the memory logic has determined the simultaneous existance of the signals mentioned above, it places the true data corresponding to the given address location on the data bus (DBUS0 to DBUS7), and returns an OPACK signal to the processor. The processor, recognizing the OPACK, strobes the data into the receiving register and lowers the OPREQ. This completes the memory read sequence.

NOTES: (1) OPACK must go low at least 100 nS before the trailing edge of T2 in order not to slow down the 2650.

(2) DATA IN signals must be valid for 50nS after the trailing edge of OPREQ.

(3) Allowable memory access time is $1\mu s$ with $2.4\mu s$ cycle time

Figure III-1


MEMORY READ SEQUENCE

If the \overline{OPACK} signal is delayed by the memory device, the processor waits until it is received. OPREQ is lowered only after the receipt of \overline{OPACK} . The memory device should raise \overline{OPACK} after OPREQ falls.

MEMORY WRITE TIMING

The signals involved with the processor's memory write sequence are similar to those used in the memory read sequence with the following exceptions: 1) the \overline{R}/W signal is in the W state and, 2) the WRP signal provides a positive going pulse during the write sequence which may be used as a chip enable, write pulse, etc.

Figure III-2 demonstrates the signals that occur during a memory write.

NOTES: (1) OPACK must go low at least 100nS before the trailing edge of T2 in order not to slow down the 2650

Figure III-2

INPUT/OUTPUT TIMING

The signal exchanges for I/O with external devices is very similar to th signaling for memory read/write. See the Features Section, INPUT/OUT PUT FACILITIES.

CRITICAL TIMES

The following timing diagram describes the timing relationship between the various interface signals. The critical times are labeled and defined in the table of AC characteristics.

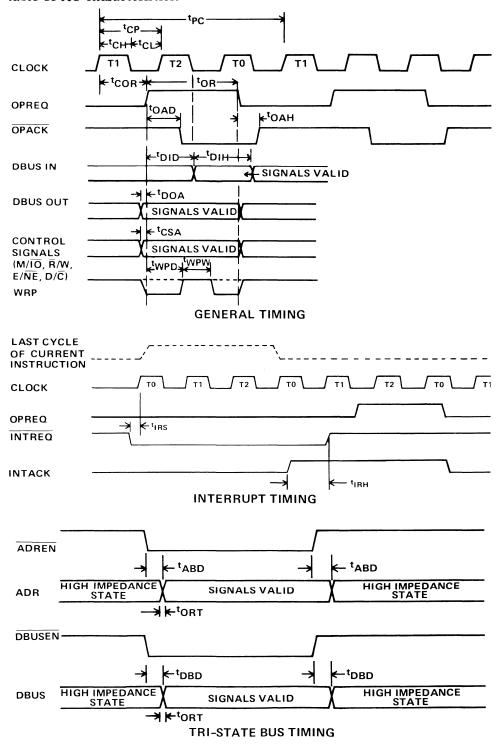


Figure III-3

2650 TIMING DIAGRAMS

PRELIMINARY AC CHARACTERISTICS

) OC to 70 OC $\rm V_{CC}$ =5 V $\pm 5\%$ unless otherwise specified, see notes 1,2,3 & 4.

CVMDOL	DADAMETER	LIMI	LIMITS			
SYMBOL	PARAMETER	MIN	MAX	UNITS		
tch	Clock High Phase	400	10,000	nsec		
tcL	Clock Low Phase	400	∞	nsec		
tcp	Clock Period	800	∞	nsec		
t _{PC} 6	Processor Cycle Time	2,400	∞	nsec		
toR	OPREQ Pulse Width	2t _{CH} + t _{CL} -100	∞ ∞	nsec		
tcor	Clock to OPREQ Time	100	700	nsec		
toad ⁷	OPACK Delay Time	0	∞	nsec		
toah	OPACK Hold Time	0	∞	nsec		
t _{CSA}	Control Signal Available	50		nsec		
t _{DOA}	Data Out Available	50		nsec		
t _{DID} 8	Data in Delay	0	1000(8)	nsec		
t DIH ⁹	Data in Hold	150	·	nsec		
twpD	Write Pulse Delay	t _{CL} -100	t _{CL} -50	nsec		
t wpw	Write Pulse Width	t _{CL}	t _{CL}	nsec		
tABD	Address Bus Delay		80	nsec		
t _{DBD}	Data Bus Delay		120	nsec		
t _{IRS} 10	INTREQ Set up Time	0		nsec		
t _{IRH} 10	INTREQ Hold Time	0		nsec		
t ORT ⁵	Output Buffer Rise Time		150	nsec		

FES ON AC CHARACTERISTICS

See preceding timing diagrams for definition of timing terms.

nput levels swing between 0.65 volt and 2.2 volts.

nput signal transition times are 20ns.

Γiming reference level is 1.5 volts.

Load is $-100\mu A$ at 20pF.

A Processor Cycle time consists of three clock periods.

n order to avoid slowing down the processor, OPACK must be lowered 100ns before the trailing edge of Γ2 clock, if OPACK is delayed past this point, the processor will wait in the T2 state and sample OPACK on each subsequent negative clock edge until OPACK is lowered.

n order to avoid slowing the processor down, input data must be returned to the processor in $1\mu s$ or ess time from the OPREQ edge, at a cycle time of 2.4μ s. nput data must be held until 50ns after OPREQ falls.

In order to interrupt the current instruction, INTREQ must fall prior to the first clock of the last cycle of the current instruction. INTREQ must remain low until INTACK goes high.

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS (1)

Operating Ambient Temperature 0°C to $+70^{\circ}\text{C}$ Storage Temperature -65°C to $+150^{\circ}\text{C}$ All Input, Output, and Supply Voltages with respect to ground pin(3) -0.5V to +6V Package Power Dissipation(2)=IWPkg. 1.6W

PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

			LI		
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNI
I _{LI}	Input Load Current	V _{IN} = 0 to 5.25V		10	μ,
lон	Output Leakage Current	ADREN, DBUSEN = 2.2V, V _{OUT} = 4V		10	μ,
^I LOL	Output Leakage Current	ADREN, DBUSEN = 2.2V, V _{OUT} = 0.45V		10	μ,
^I CC	Power Supply Current	$V_{CC} = 5.25V, T_A = 0^{\circ}C$		100	m,
VIL	Input Low		-0.6	0.8	,
V _{IH}	Input High		2.2	VCC	,
VOL	Output Low	I _{OL} = 1.6 mA	0.0	0.45	,
Vон	Output High	$I_{OH} = -100 \mu\text{A}$	2.4	V _{CC} -0.5	,
CIN	Input Capacitance	V _{IN} = 0V		10	р
COUT	Output Capacitance	V _{OUT} = 0V		10	р

Conditions: $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

NOTES:

- 1. Stresses above those listed under "Maximum Guaranteed Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this specification is not implied.
- 2. For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal resistance of 50°C/W junction to ambient (40 pin IW package).
- 3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated
- 4. Parameter valid over operating temperature range unless otherwise specified.
- 5. All voltage measurements are referenced to ground.
- 6. Manufacturer reserves the right to make design and process changes and improvements.
- 7. Typical values are at +25°C, nominal supply voltages, and nominal processing parameters.

SIGNETICS 2650 PROCESSOR INTERFACE SIGNALS

INPUT 1	TYPE	PINS	ABBREVIATION	FUNCTION	SIGNAL SENSE
INPUT	INPUT	1	GND	Ground	GND=0
INPUT		1 1		1	•
INPUT		1			
NPUT				1	(paise), sauses (cset
INPUT		1 1			PAUSE=0, temporarily halts execution
NPUT	INPUT	1	INTREQ	•	
INPUT	INPUT	1		1	
NPUT		1			•
INPUT 1	INPUT	1	NAME AND ADDRESS OF THE PARTY O	1	
NOUTPUT	INPUT	1			
OUTPUT	INJOUT	8	DBUS0 DBUS7	Data Bus	DBUSn=0 (low), DBUSn=1 (high)
OUTPUT 1		13		ı	-
Data Control	OUTPUT	1		Address 13 or	
OUTPUT 1	OUTPUT	1	ADR14 or D/C		Control=0, Data 1
OUTPUT 1	OUTPUT	1	OPREQ	1	
ÖUTPUT OUTPUT 1 1 1 OUTPUT R W FLAG Read/Write Flag Output INTACK R=0, W=1 FLAG=1 (high), FLAG=0 (low) INTACK=1, acknowledge Run-Wait Indicator R=0, W=1 FLAG=1 (high), FLAG=0 (low) INTACK=1, acknowledges interrupt RUN=1, WAIT=0 WRP=1 (pulse), causes writing PIN CONFIGURATION SENSE 1 40 FLAG ADR 12 2 39 VCC ADR 11 3 38 CLOCK ADR 10 4 37 PAUSE ADR 9 5 36 OPACK ADR 8 6 35 RUN/WAIT ADR 7 7 34 INTACK ADR 6 8 33 DBUS 0 ADR 5 9 2650 32 DBUS 1 ADR 4 10 31 DBUS 2 ADR 1 13 28 DBUS 3 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADR 1 15 26 DBUS 7 BUSS N ADR 14-D/C 18	OUTPUT	1			1
OUTPUT	ŏuтрит	1	R∈W		
INTACK	OUTPUT	1	FLAG	Flag Output	1
Number N	OUTPUT	1	INTACK	Interrupt Acknowledge	•
NRP	OUTPUT	1	RUN/WAIT	Run/Wait Indicator	1
SENSE 1 40 FLAG ADR 12 2 39 V _{CC} ADR 11 3 38 CLOCK ADR 10 4 37 PAUSE ADR 9 5 36 OPACK ADR 8 6 35 RUNAWAIT ADR 7 7 34 INTACK ADR 6 8 33 DBUS 0 ADR 5 9 2650 32 DBUS 1 ADR 4 10 31 DBUS 2 ADR 3 11 30 DBUS 3 ADR 2 12 29 DBUS 4 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP	OUTPUT	1	WRP	Write Pulse	1
ADR 7 7 34 INTACK ADR 6 8 33 DBUS 0 ADR 5 9 2650 32 DBUS 1 ADR 4 10 31 DBUS 2 ADR 3 11 30 DBUS 3 ADR 2 12 29 DBUS 4 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 13-E/NE 19 22 WRP			ADR 10	4 37 5 36	PAUSE
ADR 6 8 33 DBUS 0 ADR 5 9 2650 32 DBUS 1 ADR 4 10 31 DBUS 2 ADR 3 11 30 DBUS 3 ADR 2 12 29 DBUS 4 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 13-E/NE 19 22 WRP					
ADR 5 9 2650 32 DBUS 1 ADR 4 10 31 DBUS 2 ADR3 11 30 DBUS 3 ADR 2 12 29 DBUS 4 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP					
ADR 4 10 31 DBUS 2 ADR3 11 30 DBUS 3 ADR 2 12 29 DBUS 4 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP					
ADR3 11 30 DBUS 3 ADR 2 12 29 DBUS 4 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP					
ADR 2 12 29 DBUS 4 ADR 1 13 28 DBUS 5 ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP					
ADR 0 14 27 DBUS 6 ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP					
ADREN 15 26 DBUS 7 RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP			ADR 1	13 28	DBUS 5
RESET 16 25 DBUSEN INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP			ADR 0	14 27	DBUS 6
INTREQ 17 24 OPREQ ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP			ADREN	15 26	DBUS 7
ADR 14-D/C 18 23 R/W ADR 13-E/NE 19 22 WRP					
ADR 13-E/NE 19 22 WRP			_	17 24	
_					
M/IO 20 21 GND					
			M/IO	20 21	GND

CHAPTER IV

FEATURES

INPUT/OUTPUT FACILITIES

The 2650 processor provides several mechanisms for performing input/output functions. They are flag and sense, non-extended I/O instructions, extended I/O instructions, and memory I/O. These four facilities are described below.

FLAG & SENSE I/O

The 2650 has the ability to directly output one bit of data without additional address decoding or synchronizing signals.

The bit labeled "Flag" in the Program Status Word is connected through a TTL compatible driver to the chip output at pin #40. The Flag output always reflects the value in the Flag bit.

When a program changes the Flag bit through execution of an LPSU, PPSU, or CPSU, the bit will be set or cleared during the last cycle of the instruction that changes it.

The Flag bit may be used conveniently for many different purposes. The following is a list of some possible uses:

- 1. A serial output channel
- 2. An additional address bit to increase addressing range.
- 3. A switch or toggle output to control external logic.
- 4. The origin of a pulse for polling chains of devices.

The Sense bit performs the complementary function of the Flag and is a single bit direct input to the 2650. The Sense input, pin #1 is connected to a TTL compatible receiver and is then routed directly to a bit position in the Program Status Word. The bit in the PSW always represents the value of the external signal. It may be sampled anytime through use of the TPSU or SPSU instructions.

This simple input to the processor may be used in many ways. The following is a list of some possible uses:

- 1. A serial input channel
- 2. A sense switch input
- 3. A break signal to a processing program
- 4. An input for yes/no signaling from external devices.

NON-EXTENDED I/O

There are four one byte I/O instructions; REDC, REDD, WRTC, and WRTD. They are all referred to as non-extended because they can communicate only one byte of data, either into or out of the 2650.

REDC and REDD causes the input transfer of one byte of data. They are identical except for the fact that the D/\overline{C} Signal is in the D state for REDD and in the \overline{C} state for REDC. Similarly, the instructions WRTC and WRTD cause an output transfer of one byte of data. The D/\overline{C} line discriminates between the two pairs of input/output instructions. The D/\overline{C} line can be used as a 1-bit device address in simple systems.

The read and write timing sequences for the one byte I/O instructions are the same as the memory read and write sequences with the following exceptions: the M/ $\overline{\rm IO}$ signal is switched to $\overline{\rm IO}$, the D/ $\overline{\rm C}$ line becomes valid, $E/\overline{\rm NE}$ is switched to $\overline{\rm NE}$ (non-extended), and the Address bus contains no valid information.

The $\overline{\text{NE}}$ signal informs the devices outside the 2650 that a one byte I/O instruction is being executed. The D/ $\overline{\text{C}}$ line indicates which pair of the one byte I/O instructions are being executed; D implies either WRTD or REDD, and $\overline{\text{C}}$ implies either WRTC or REDC. Finally, to determine whether it is a read or a write, examine the $\overline{\text{R}}/\text{W}$ signal level.

Table IV-1 illustrates the sense of the interface signals. The "Signal Timing" section should be referenced for the exact timing relationships. It should be remembered that the control signals are not to be considered valid except when the OPREQ signal is valid.

Table IV-1

I/O INTERFACE SIGNALS

	OPREQ	M/IO	R/W	ADR13-E/NE	ADR14-D/C
MEMORY READ	Т	М	R	ADR13	ADR14
MEMORY WRITE	Т	M	W	ADR13	ADR14
2 BYTE READ	Т	ĪŌ	R	Е	Don't Care
2 BYTE WRITE	Т	ĪŌ	W	Е	Don't Care
1 BYTE CONTROL READ	, T	ΙŌ	R	NE	C
1 BYTE CONTROL WRITE	Т	ΙŌ	W	NE	C
1 BYTE DATA READ	Т	ΙŌ	R	NE	D
1 BYTE DATA READ	Т	ΙŌ	W	NE	D

EXTENDED I/O

There are two, two byte I/O instructions; REDE and WRTE. They are referred to as extended because they can communicate two bytes of data when they are executed. The REDE causes the second byte of the instruction to be output on the low order address lines, ADR0-ADR7, which is intended to be used as a device address while the byte of data then on the Data Bus will be strobed into the register specified in the instruction. The WRTE also presents the second byte of the instruction on the Address Bus, but a byte of data from the register specified in the instruction is simultaneously output on the Data Bus.

The two byte I/O instructions are similar to the one byte I/O instructions except: the D/\overline{C} line is not considered, and the data from the second byte of the I/O instruction appears on the Address Bus all during the time that OPREQ is valid. The data on the Address Bus is intended to convey a device address, but may be utilized for any purpose.

Table IV-1 illustrates the sense of the interface signals for extended I/O instructions. Refer to "Signal Timing" section for exact timing relationships.

MEMORY I/O

The 2650 user may choose to transfer data into or out of the processor using the memory control signals. The advantage to this technique is that the data can be read or written by the program through ordinary instruction execution and data may be directly operated upon with the arithmetic instructions.

To make use of this technique, the designer has to assign memory addresses to devices and design the device interfaces to generate the same signals as memory.

A disadvantage to this method is that it may be necessary to decode more address lines to determine the device address than with other I/O facilities

INTERRUPT MECHANISM

The 2650 has been implemented with a conventional, single level, address vectoring interrupt mechanism. There is one interrupt input pin. When an external device generates an interrupt signal (INTREQ), the processor is forced to transfer control to any of 128 possible memory locations as determined by an 8-bit vector supplied by the interrupting device.

Of special interest is that the device may return a relative indirect address signal which causes the processor to enter an indirect addressing sequence upon receipt of an interrupt. This enables a device to direct the processor to execute code anywhere within addressable memory.

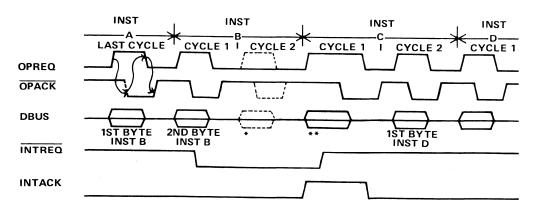
Upon recognizing the interrupt signal, the processor automatically sets the Interrupt Inhibit bit in the Program Status Word. This inhibits further interrupts from being recognized until the interrupt routine is finished executing and a Return-and-Enable instruction is executed or the inhibit bit is explicitly cleared.

When the inhibit bit in the PSW is set, the processor will not recognize an interrupt input. The Interrupt Inhibit bit may be set under program control (LPSU, PPSU) and is automatically set whenever the processor accepts an interrupt. The inhibit bit may be cleared in three ways:

- 1. By a RESET operation
- 2. By execution of an appropriate clear or load PSU instruction; (CPSU, LPSU)
- 3. By execution of a Return-and-Enable instruction.

The sequence of events for a normal interrupt operation is as follows:

- 1. An executing program enables interrupts.
- 2. External device initiates interrupt with the \overline{INTREQ} line.
- 3. Processor finishes executing current instruction.
- 1. Processor sets inhibit bit.
- 5. Processor inserts the first byte of ZBSR (Zero Branch-to-Subroutine, Relative) instruction into the instruction register instead of what would have been the next sequential instruction.
- 3. Processor accesses the data bus to fetch the second byte of the ZBSR instruction.
- 7. Interrupting device responds to the Processor generated INTACK (Interrupt Acknowledge) by supplying the requested second byte.
- 3. The processor executes the Zero Branch-to-Subroutine instruction, saving the address of the instruction following the interrupted instruction in the RAS, and proceeds to execute the instruction at page 0, byte 0, or the address relative to page 0, byte 0 as given by the interrupting device.
-). When the interrupt routine is complete, a return instruction (RETC, RETE) pulls the address from the RAS and execution of the interrupted program resumes.


Since the interrupting device specifies the interrupt subroutine address in the standard relative address format, it has considerable flexibility with regard to the interrupt procedure. It can point to any location that is within +63 or -64 bytes of page zero, byte zero of memory. (Negative relative addresses wrap around the memory, modulo 8,192₁₀ bytes.) The interrupting device also may specify whether the subroutine address is direct or indirect by providing a zero or one to DBUS #7 (pin #26). If the external device is not complex enough to exercise these options, it may respond to the INTACK operation with a byte of all zeroes. In such a case, the processor will execute a direct Branch-to-Subroutine to page zero, byte zero of memory.

The timing diagram in Figure IV-2 will help explain how the interrup system works in the processor. The execution of the instruction labeled "A has been proceeding before the start of this diagram. The last cycle c instruction "A" is shown. Notice that, as in all external operations, th OPREQ output eventually causes an \overline{OPACK} input, which in turn allow OPREQ to be turned off. The arrows show this sequence of events. The last cycle of instruction "A" fetches the first byte of instruction "B" from Memory and inserts it into the Instruction Register.

Assume that instruction "B" is a two cycle, two byte instruction with n operand fetch (e.g., ADDI). Since the first byte has already been fetched by instruction "A", the first cycle of instruction "B" is used to fetch the second byte of instruction "B". Had instruction "B" not been interrupted, it would have fetched the first byte of the next sequential instruction during it second (last) cycle. The dotted lines indicate that operation.

Since instruction "B" is interrupted, however, the last cycle of "B" is used to insert the interrupt instruction (ZBSR) into the instruction register Notice that the \overline{INTREQ} input can arrive at any time. Instruction B is interrupted since \overline{INTREQ} occurred prior to the last (2nd) cycle of execution

Instead of being the next sequential instruction following "B", instruction "C" is the completion of the interrupt. The first cycle of "C" is used to fetch the second byte of the ZBSR instruction from the DBUS as provided by the interrupting device. This fact is indicated by the presence of the INTACK control signal. The INTREQ may then be removed. When the device responds with the requested byte, it uses a standard operation acknowledge procedure (OPACK) to so indicate to the processor. During the second cycle of instruction "C" the processor executes the ZBSR instruction and fetches the first byte of instruction "D" which is located at the subroutine address.

- * PROCESSOR INSERTS 1ST BYTE OF ZBSR INSTRUCTION. ADDRESS OF 1ST BYTE OF INSTC IS PUSHED INTO RETURN ADDRESS STACK.
- ** 2ND BYTE OF ZBSR (INTERRUPT VECTOR)

Figure IV - 2

INTERRUPT TIMING

SUBROUTINE LINKAGE

The on-chip stack, along with the Branch-to-Subroutine and Return astructions provide the facility to transfer control to a subroutine. The ubroutine can return control to the program that branched to it via a leturn instruction.

The stack is eight levels deep which means that a routine may branch to a ubroutine, which may branch to another subroutine, etc., eight times before ny Return instructions are executed.

When designing a system that utilizes interrupts, it should be remembered hat the processor jams a ZBSR into the IR and then executes it. This will ause an entry to be pushed into the on-chip stack like any other 3ranch-to-Subroutine instruction and may limit the stack depth available in ertain programs.

When branching to a subroutine, the following sequence of events occurs:

- . The address in the IAR is used to fetch the Branch-to-Subroutine instruction and is then incremented in the Address Adder so that it points to the instruction following the subroutine branch.
- The Stack Pointer is incremented by one so that it points to the next Return Address Stack location.
- . The contents of the IAR are stored in the stack at the location designated by the Stack Pointer.
- The operand address contained in the Branch-to-Subroutine instruction (the address of the first instruction of the subroutine) is inserted into the IAR.

When returning from a subroutine, this sequence of events occurs:

- .. The address in the IAR is used to fetch the return (RETC, RETE) instruction from memory.
- 2. When the return instruction is recognized by the processor, the contents of the stack entry pointed to by the Stack Pointer is placed into the IAR.
- 3. The Stack Pointer is decremented by one.
- 1. Instruction execution continues at the address now in the IAR.

CONDITION CODE USAGE

The two-bit register, called the Condition Code, is incorporated in the Program Status Word. It may be seen in the description of the 2650 nstructions, that the Condition Code (CC) is specifically set by every nstruction that causes data to be transferred into a general purpose register and it is also set by compare instructions.

The reason for this design feature is that after an instruction executes, the CC contains a modest amount of information about the byte of data which has just been manipulated. For example, a program loads register one with a byte of unknown data and the Condition Code setting indicates that the byte is positive, negative or zero. The negative indication implies that bit #7 s set to one.

Consequently, a data manipulation operation when followed by a conditional branch is often sufficient to determine desired information without resorting to a specific test, thus saving instructions and memory space.

In the following example, the Condition Code is used to test the parity of a byte of data which is stored at symbolic memory location CHAR.

EQ	EQU	0	THE EQUAL CONDITION CODE
CHAR	DATA	2	UNKNOWN DATA BYTE
WC	EQU	H'04'	THE WITH CARRY BIT
NEG	EQU	2	CC MASK
	CPSL	WC	CLEAR CARRY BIT
	LODI,R2	-8	SET UP COUNTER
	SUBZ	R0	CLEAR REG 0
	LODR,R1	CHAR	GET THE CHARACTER (cc is set)
LOOP	BCFR,NEG	G01	IF NOT SET, DON'T COUNT (cc is
			tested)
	ADDI,R0	+1	COUNT THE BIT
G01	RRL,R1		MOVE BITS LEFT (cc is set)
	BIRR,R2	LOOP	LOOP TILL DONE

- * FINISHED, TEST IF REG 0 HAS A ONE IN LOW ORDER
- * IF BIT #0 = 1, ODD PARITY. IF BIT #0 = 0, THEN EVEN.

	TMI,R0	H'01'
	BCTR,EQ	ODD
EVEN	HALT	
ODD	HALT	

START-UP PROCEDURE

The 2650 processor, having no internal start-up procedure must be started in an orderly fashion to assure that the internal control logic begins in a known state.

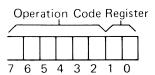
Assuming power is applied to the chip and the clock input is running, the easiest way to start is to apply a Reset signal for at least three clock periods. When the RESET signal is removed the processor will fetch the instruction at page 0, byte 0 and commence ordinary instruction execution.

To start processing at a specific address, a more complex start-up procedure may be employed. If an Interrupt signal is applied initially along with the Reset, processing will commence at the address provided by the interrupting device. Recall that the address provided may include a bit to specify indirect addressing and therefore the first instruction executed may be anywhere within addressable memory. The Reset and Interrupt signa may be applied simultaneously and when the Reset is removed, the processor will execute the usual interrupt signal sequence as described in INTERRUPT MECHANISM. There is an example of a start-up technique in the System Application Notes.

CHAPTER V INSTRUCTIONS

ADDRESSING MODES

An addressing mode is a method the processor uses for developing argument addresses for machine instructions.


The 2650 processor can develop addresses in eight ways:

- Register addressing
- Immediate addressing
- Relative addressing
- Relative, indirect addressing
- Absolute addressing
- Absolute, indirect addressing
- Absolute, indexed addressing
- Absolute, indirect, indexed addressing

However, of these eight addressing modes, only four of them are basic. The others are variations due to indexing and indirection. The basic addressing mode of each instruction is indicated in parentheses in the first line of each detailed instruction description. The following text describes now effective addresses are developed by the processor.

REGISTER ADDRESSING

All register-to-register instructions are one byte in length. Instructions utilizing this addressing mode appear in this general format.

Since there are only two bits designated to specify a register, register zero always contains one of the operands while the other operand is in one of the three registers in the currently selected bank. Register zero may also be specified as the explicit operand giving instructions such as: LODZ R0.

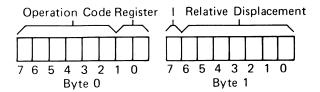
In one byte register addressing instructions which have just one operand, my of the currently selected general purpose registers or register zero may be specified, e.g., RRL,R0.

IMMEDIATE ADDRESSING

All immediate addressing instructions are two bytes in length. The first byte contains the operation code and register designation, while the second byte contains data used as the argument during instruction execution.

Two's complement binary number

Operation Code Register or 8-bit logic mask

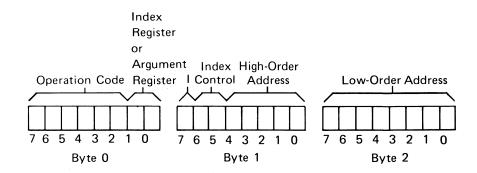

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 Byte 1

The second byte, the data byte, may contain a binary number or a logic mask depending on the particular instruction being executed. Any register may be designated in the first byte.

RELATIVE ADDRESSING

Relative addressing instructions are all two bytes in length and are memory reference instructions. One argument of the instruction is a register and the other argument is the contents of a memory location. The format of relative addressing instructions is:


The first byte contains the operation code and register designation, while the second byte contains the relative address. Bits 0—6, byte 1, contain a bit two's complement binary number which can range from -64 to +63. This number is used by the processor to calculate the effective address. The effective address is calculated by adding the address of the first byte following a relative addressing instruction to the relative displacement in the second byte of the instruction.

If bit 7, byte 1 is set to "1", the processor will enter an indirect addressing cycle, where the actual operand address will be accessed from the effective address location. See Indirect Addressing.

Two of the branch instructions (ZBSR, ZBRR) allow addressing relative to page zero, byte 0 of memory. In this case, values up to +63 reference the first 63 bytes of page zero and values up to -64 reference the last 64 byte of page zero.

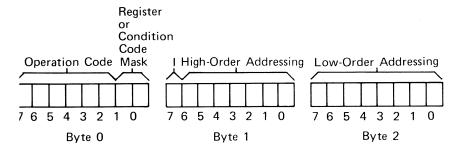
ABSOLUTE ADDRESSING FOR NON-BRANCH INSTRUCTIONS

Absolute addressing instructions are all three bytes in length and are memory reference instructions. One argument of the instruction is a register designated in bits 1 and 0, byte 0; the other argument is the contents of ϵ memory location. The format of absolute addressing instructions is:

Bits 4-0, byte 1 and 7-0, byte 2 contain the absolute address and can address any byte within the same page that the instruction appears.

The index control bits, bits #6 and #5, byte 1 determine how the effective address will be calculated and possibly which register will be the argument during instruction execution. The index control bits have the following interpretation:

Index	Control	
Bit 6	Bit 5	Meaning
0	0	Non-indexed address
0	1	Indexed with auto-increment
1	0	Indexed with auto-decrement
1	1	Indexed only


When the index control bits are 0 & 0, bits #1 and #0 in byte 0 contain the argument register designation and bits 0 to 4, byte 1 and bits 0 to 7, byte 2 contain the effective address. Indirect addressing may be specified by setting bit #7, byte 1 to a one.

When the index control bits are 1 & 1, bits #1 and #0 in byte 0 designate he index register and the argument register implicitly becomes register zero. The effective address is calculated by adding the contents of the index egister (8-bit absolute integer) to the address field. If indirect addressing is pecified, the indirect address is accessed and then the value in the index egister is added to the indirect address. This is commonly called post ndexing.

When the index control bits contain 0 & 1, the address is calculated by the rocessor exactly as when the control bits contain 1 & 1 except a binary 1 is dded to the contents of the selected index register before the calculation of he effective address proceeds. Similarly, when the index control bits contain & 0, a binary 1 is subtracted from the contents of the selected index register efore the effective address is calculated.

ABSOLUTE ADDRESSING FOR BRANCH INSTRUCTIONS

The three byte, absolute addressing, branch instructions deviate slightly in ormat from ordinary absolute addressing instructions as shown below:

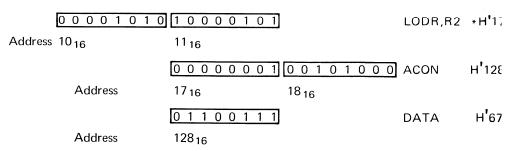
The notable difference is that bits 6 and 5, byte 1, are no longer nterpreted as Index Control bits, but instead are interpreted as the high order bits of the address field. This means that there is no indexing allowed on most absolute addressing branch instructions, but indexed branches are possible through use of the BXA and BSXA instructions. The bits #6 and #5, byte 1, are used to set the current page register, thus enabling programs o directly transfer control to another page.

See the MEMORY ORGANIZATION, BXA and BSXA instructions, and INDIRECT ADDRESSING.

INDIRECT ADDRESSING

Indirect addressing means that the argument address of an instruction is not specified by the instruction itself, but rather the argument address will be found in the two bytes pointed to by the address field or relative address field, of absolute or relative addressing instructions. In the case of absolute addressing, the value of the index register is added to the indirect address not to the value in the address field of the instruction. In both cases, the processor will enter the indirect addressing state when the bit designated "I" is set to one. Entering the indirect addressing sequence adds two cycles (6 clock periods) to the execution time of an instruction.

Indirect addresses are 15-bit addresses stored right justified in two contiguous bytes of memory. As such, an indirect address may specify any location in addressable memory (0-32,767). The high order bit of the two byte indirect address is not used by the processor.

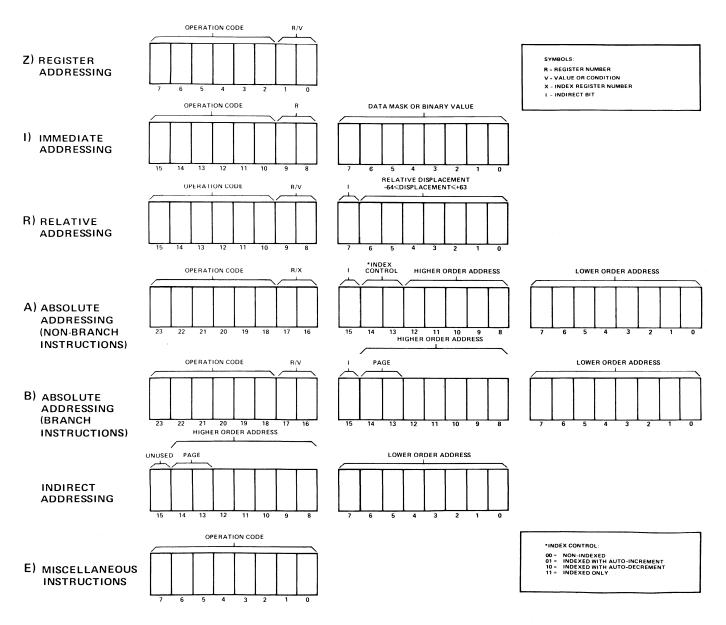

Only single level indirect addressing is implemented. The following examples demonstrate indirect addressing.

Example 1.

0 0 0 0 1 1 1 0	10000000	0 1 0 1 0 0 0 1	LODA,R2	*H ¹ 51
Address 10 ₁₆	11 ₁₆	12 ₁₆		
	00000001	0 0 1 0 1 0 0 0	ACON	H ' 128
Address	51 ₁₆	52 ₁₆		
	0 1 1 0 0 1 1 1		DATA	H ' 67
Address	128 ₁₆			

The LODA instruction in memory locations 10, 11, and 12 specifies indirect addressing (bit 7, byte 1, is set). Therefore, when the instruction is executed, the processor takes the address field value, H' 51', and uses it to access the two byte indirect address at 51 and 52. Then using the contents of 51 and 52 as the effective address, the data byte containing H' 67' is loaded into register 2.

Example 2.


In a fashion similar to the previous example, the relative address is used to access the indirect address which points to the data byte. When the LODR instruction is executed, the data byte contents, H' 67', will be loaded into register 2.

INSTRUCTION FORMAT EXCEPTIONS

There are several instructions which are detected by decoding the entire 8 bits of the first byte of the instruction. These instructions are unique and may be noticed in the instruction descriptions. Examples are: HALT, CPSU, CPSL.

Of this type of instruction, two operation codes were taken from otherwise complete sets thus eliminating certain possible operations. The cases are as follows: Storing register zero into register zero is not imple-(NOT OKAY) STRZ 0 mented, the operation code is used for NOP (no NOP (OKAY) operation). (NOT OKAY) ANDZ 0 AND of register zero with register zero is not implemented, the operation code is used for HALT. (OKAY) HALT

INSTRUCTION FORMATS

DETAILED PROCESSOR INSTRUCTIONS

LOAD REGISTER ZERO

(Register Addressing)

Mnemonic

LODZ

Binary Coding

000000

7 6 5 4 3 2 1 0 Execution Time 2 6

Time 2 cycles (6 clock periods)

Description

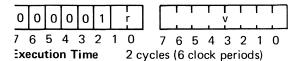
This one-byte instruction transfers the contents of the specified register, $r_{\rm c}$ into register zero. The previous contents of register zero are lost. The contents of register r remain unchanged.

When the specified register, r, equals 0, the operation code is changed to 60 by the assembler. The instruction, 00000000, yields indeterminate results.

Processor Registers Affected

CC

Register Zero	CC1	CC0
Positive	0	1
Zero	0	Ó
Negative	1	0


LOAD IMMEDIATE

(Immediate Addressing)

Vinemonic

LODI,r

3inary Coding

Description

This two-byte instruction transfers the second byte of the instruction, v, nto the specified register, r. The previous contents of r are lost.

'rocessor Registers Affected

CC

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

LOAD RELATIVE

(Relative Addressing)

Mnemonic

LODR,r

(*)a

Binary Coding

Execution Time

3 cycles (9 clock periods)

Description

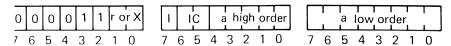
This two-byte instruction transfers a byte of data from memory into th specified register, r. The data byte is found at the effective address formed by the addition of the a field and the address of the byte following this instruction. The previous contents of register r are lost. Indirect addressin may be specified.

Processor Registers Affected

CC

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

.OAD ABSOLUTE


(Absolute Addressing)

Inemonic

LODA,r

(*)a(,X)

inary Coding

Execution Time

4 cycles (12 clock periods)

Description

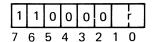
This three-byte instruction transfers a byte of data from memory into the specified register, r. The data byte is found at the effective address. If ndexing is specified, bits 1 and 0, byte 0, indicate the index register and the lestination of the operation implicitly becomes register zero. The previous contents of register r are lost.

Indirect addressing and/or indexing may be specified.

Processor Registers Affected

CC

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0


STORE REGISTER ZERO

(Register Addressing

Mnemonic

STRZ

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This one-byte instruction transfers the contents of register zero into th specified register r. The previous contents of register r are lost. The content of register zero remain unchanged.

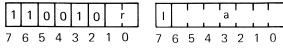
Note: Register r may not be specified as zero. This operation code '11000000', is reserved for NOP.

Processor Registers Affected

СС

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

STORE RELATIVE


(Relative Addressing)

Mnemonic

STRR,r

(*)a

Binary Code

Execution Time

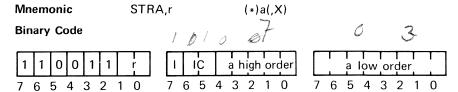
3 cycles (9 clock periods)

Description

This two-byte instruction transfers a byte of data from the specified register, r, into the byte of memory pointed to by the effective address. The contents of register r remain unchanged and the contents of the memory byte are replaced.

Indirect addressing may be specified.

Processor Registers Affected


None

Condition Code Setting

N/A

STORE ABSOLUTE

(Absolute Addressing)

Execution Time

4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from the specified register, r, into the byte of memory pointed to by the effective address. The contents of register r remain unchanged and the contents of the memory byte are replaced.

Indirect addressing and/or indexing may be specified. If indexing is specified, bits 1 and 0, byte 0, indicate the index register and the destination o the operation implicitly becomes register zero.

Processor Registers Affected

None

Condition Code Setting

N/A

ADD TO REGISTER ZERO

(Register Addressing)

Inemonic

ADDZ

3inary Code

Execution Time

2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register, r, and the contents of register zero to be added together in a true binary adder. The 8-bit sum of the addition replaces the contents of register zero. The contents of register r remain unchanged.

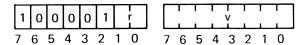
Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected

C, CC, IDC, OVF

Register Zero	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

ADD IMMEDIATE


(Immediate Addressing)

Mnemonic

ADDI,r

ν

Binary Coding

Execution Time

2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents of the second byte of this instruction to be added together in a true binary adder. The eight-bit sum replaces the contents of register r.

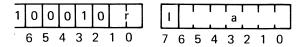
Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected

C, CC, IDC, OVF

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

\DD RELATIVE


(Relative Addressing)

Inemonic

ADDR,r

(*)a

inary Coding

xecution Time

3 cycles (9 clock periods)

Pescription

This two-byte instruction causes the contents of register r and the contents of the byte of memory pointed to by the effective address to be added toether in a true binary adder. The eight-bit sum replaces the contents of egister r.

Indirect addressing may be specified.

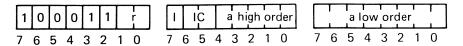
lote: Add with Carry may be effected. See Carry bit.

rocessor Registers Affected

C, CC, IDC, OVF

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

ADD ABSOLUTE


(Absolute Addressing

Mnemonic

ADDA,r

(*)a(,X)

Binary Coding

Execution Time

4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r and the contents of the byte of memory pointed to by the effective address to be added together in a true binary adder. The eight-bit sum replaces the contents of register r.

Indirect addressing and/or indexing may be specified. If indexing is specified, bits 1 and 0, byte 0, indicate the index register and the destination o the operation implicitly becomes register zero.

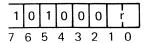
Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected

C, CC, IDC, OVF

Register r	CC1	CCC
Positive	0	1
Zero	0	0
Negative	1	0

SUBTRACT FROM REGISTER ZERO


(Register Addressing)

/Inemonic

SUBZ

r

Binary Coding

Execution Time

2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to be subtracted from the contents of register zero. The result of the subtraction replaces the contents of register zero.

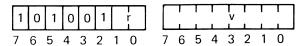
The subtraction is performed by taking the binary two's complement of he contents of register r and adding that result to the contents of register zero. The contents of register r remain unchanged.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected

C, CC, IDC, OVF

Register Zero	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0


SUBTRACT IMMEDIATE

(Immediate Addressing)

Mnemonic

SUBI,r

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the second byte of thi instruction to be subtracted from the contents of register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two's complement o the contents of the second instruction byte and adding that result to the contents of register r.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected

C, CC, IDC, OVF

Register r	CC1	CC0	
Positive	0	1	
Zero	0	0	
Negative	1	0	

SUBTRACT RELATIVE

(Relative Addressing)

Inemonic

SUBR,r

(*)a

3inary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the byte of memory pointed to by the effective address to be subtracted from the contents of egister r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two's complement of the contents of the byte of memory and adding that result to the contents of register r.

Indirect addressing may be specified.

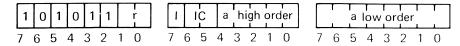
Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected

C, CC, IDC, OVF

Register r	gister r CC1	
Positive	0	1
Zero	0	0
Negative	1	0

SUBTRACT ABSOLUTE


(Absolute Addressing

Mnemonic

SUBA,r

(*)a(,X)

Binary Code

Execution Time

4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of the byte of memory pointed to by the effective address to be subtracted from the contents of register r. The result of the subtraction replaces the contents of register r

The subtraction is performed by taking the binary two's complement of the contents of the memory byte and adding that result to the contents of register r.

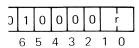
Indirect addressing and/or indexing may be specified. If indexing is specified, bits 1 and 0, byte 0, indicate the index register and the destination o the operation implicitly becomes register zero.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected

C, CC, IDC, OVF

Register r	CC1	CC0	
Positive	0	1	
Zero	0	0	
Negative	1	0	


ND TO REGISTER ZERO

(Register Addressing)

Inemonic

ANDZ

inary Code

xecution Time

2 cycles (6 clock periods)

escription

This one-byte instruction causes the contents of the specified register, r, be logically ANDed with the contents of register zero. The result of the peration replaces the contents of register zero. The contents of register remain unchanged.

The AND operation treats each bit of the argument bytes as in the truth able below:

Bit (0-7)	Bit (0-7)	AND Result
0	0	0
0	1	0
1	1	1
1	0	0

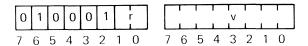
lote: Register r may not be specified as zero. This operation code, 11000000', is reserved for HALT.

rocessor Registers Affected

CC

Register Zero	CC1	CC0	
Positive	0	1	
Zero	0	0	
Negative	1	0	

AND IMMEDIATE


(Immediate Addressin

Mnemonic

ANDI,r

W

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r t be logically ANDed with the contents of the second byte of this instruction. The result of this operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the trut table below:

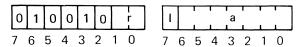
Bit (0-7)	Bit (0-7)	AND Result
0	0	0
0	1	0
1	1	1
1	0	0

Processor Registers Affected

CC

Register Zero	CC1	CC0	
Positive	0	1	
Zero	0	0	
Negative	1	0	

AND RELATIVE


(Relative Addressing)

Mnemonic

ANDR,r

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to be logically ANDed with the contents of the memory byte pointed to by the effective address. The result of this operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the truth able below:

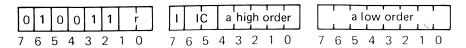
Bit (0-7)	Bit (0-7)	AND Result
0	0	0
0	1	0
1	1	1
1	0	0

Processor Registers Affected

CC

Register Zero	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

AND ABSOLUTE


(Absolute Addressing

Mnemonic

ANDA,r

(*)a(,X)

Binary Code

Execution Time

4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of Register r to be logicall ANDed with the contents of memory byte pointed to by the effective address. The result of the operation replaces the contents of register

The AND operation treats each bit of the argument bytes as in the trutl table below:

Bit (0-7)	Bit (0-7)	AND Result
0	0	0
0	1	0
1	1	1
1	0	0

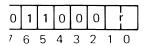
Indirect addressing and/or indexing may be specified. If indexing is spec fied, bits 1 and 0, byte 0, indicate the index register and the destination c the operation implicitly becomes register zero.

Processor Registers Affected

CC

Register Zero	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

NCLUSIVE OR TO REGISTER ZERO


(Register Addressing)

/Inemonic

IORZ

r

linary Code

xecution Time

2 cycles (6 clock periods)

escription

This one-byte instruction causes the contents of the specified register, r, be logically Inclusive ORed with the contents of register zero. The result f this operation replaces the contents of register zero. The contents of egister r remain unchanged.

The Inclusive OR operation treats each bit of the argument bytes as in the ruth table below:

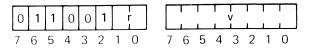
Bit (0-7)	Bit (0-7)	Inclusive OR Result
0	0	0
0	1	1
1	1	1
1	0	1
		1.1

'rocessor Registers Affected

CC

Register Zero	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

INCLUSIVE OR IMMEDIATE


(Immediate Addressing

Mnemonic

IORI,r

V

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to be logically Inclusive ORed with the contents of the second byte of thi instruction. The result of this operation replaces the contents of register r

The Inclusive OR operation treats each bit of the argument bytes as in th truth table below:

Bit (0-7)	Bit (0-7)	Inclusive OR Result
0	0	0
0	1	1
1	1	1
1	0	1

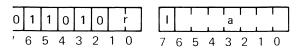
Processor Registers Affected

Condition Code Setting

CC

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

NCLUSIVE OR RELATIVE


(Relative Addressing)

Inemonic

IORR,r

(*)a

linary Code

xecution Time

3 cycles (9 clock periods)

escription

This two-byte instruction causes the contents of the specified register r to e logically Inclusive ORed with the contents of the memory byte pointed p by the effective address. The result of this operation replaces the previous ontents of register p.

Indirect addressing may be specified.

The Inclusive OR operation treats each bit of the argument byte as in the ruth table below:

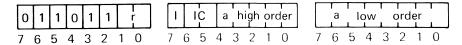
Bit (0-7)	Bit (0-7)	Inclusive OR Result
0	0	0
0	1	1
1	1	1
1	0	1

CC

rocessor Registers Affected

Register r	CC1	CCC
Positive	0	1
Zero	0	0
Negative	1	0

INCLUSIVE OR ABSOLUTE


(Absolute Addressing

Mnemonic

IORA,r

(*)a(,X)

Binary Code

Execution Time

4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be logicall Inclusive ORed with the contents of the memory byte pointed to by th effective address. The result of the operation replaces the previous content of register r.

Indirect addressing and/or indexing may be specified. If indexing is specified, bits 1 and 0, byte 0, indicate the index register and the destination o the operation implicitly becomes register zero.

The Inclusive OR operation treats each bit of the argument bytes as in the truth table below:

Bit (0-7)	Bit (0-7)	Inclusive OR Result
0	0	0
0	1	1
1	1	1
1	0	1

Processor Registers Affected

Condition Code Setting

CC

Register Zero	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

XCLUSIVE OR TO REGISTER ZERO

(Register Addressing)

Inemonic

EORZ

r

inary Code

xecution Time

2 cycles (6 clock periods)

escription

This one-byte instruction causes the contents of the specified register r to e logically Exclusive ORed with the contents of register zero. The result of his operation replaces the contents of register zero. The contents of register remain unchanged.

The Exclusive OR operation treats each bit of the argument bytes as in he truth table below:

Bit (0-7)	Bit (0-7)		Exclusive OR Result
0	0		0
0	1		1
1	1		0
1	0		1

'rocessor Registers Affected

Condition Code Setting

СС

Register Zero	CC1	CCC
Positive	0	1
Zero	0	0
Negative	1	0

EXCLUSIVE OR IMMEDIATE

(Immediate Addressing)

Mnemonic EORI,r v

Binary Code

0 0 1 0 0 1 r

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2 cycles (6 clock periods)

Description

Execution Time

This two-byte instruction causes the contents of the specified register r to be logically Exclusive ORed with the contents of the second byte of this instruction. The result of this operation replaces the previous contents of register r.

The Exclusive OR operation treats each bit of the argument bytes as it the truth table below:

Bit (0-7)	Bit (0-7)	Exclusive OR Result
0	0	0
0	1	1
1	1	0
1	0	1

 1
 0
 | |
 1

 Processor Registers Affected
 CC

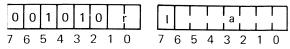
 Register r
 CC1
 CC0

 Positive
 0
 1

 Zero
 0
 0

 Negative
 1
 0

EXCLUSIVE OR RELATIVE


(Relative Addressing)

Mnemonic

EORR,r

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to be logically Exclusive ORed with the contents of the memory byte pointed to by the effective address. The result of this operation replaces the previous contents of register r.

Indirect addressing may be specified.

The Exclusive OR operation treats each bit of the argument bytes as in the truth table below:

Bit (0-7)	Bit (0-7)	Exclusive OR Result
0	0	0
0	1	1
1	1	0
1	0	1

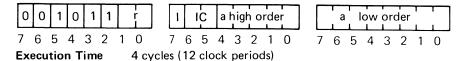
Processor Registers Affected

CC

Condition Code Setting

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

EXCLUSIVE OR ABSOLUTE


(Absolute Addressing

Mnemonic

EORA,r

(*)a(,X)

Binary Code

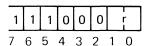
Description

This three-byte instruction causes the contents of register r to be Exclusive ORed with the contents of the memory byte pointed to by the effective address. The result of the operation replaces the previous contents of register r.

Indirect addressing and/or indexing may be specified. If indexing is specified, bits 1 and 0, byte 0, indicate the index register and the destination of the operation implicitly becomes register zero.

The Exclusive OR operation treats each bit of the argument bytes as in the truth table below:

Bit (0-7)	Bit (0-	7) [[Exclusiv	e OR Result
0	0			0
0	1			1
1	1			0
1	0			1
Processor Registers Affected		CC		
Condition Code Setting		Register r	CC1	CC0
		Positive	0	1
		Zero	0	0
		Negative	1	0


COMPARE TO REGISTER ZERO

(Register Addressing)

Vinemonic

COMZ

3inary Code

Execution Time

2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to be compared to the contents of register zero. The comparison will be performed in either "arithmetic" or "logical" mode depending on the setting of the COM bit in the Program Status Word.

When COM=1 (logical mode) the values will be interpreted as 8-bit positive binary numbers; when COM=0, the values will be interpreted as 8-bit two's complement numbers.

The execution of this instruction *only* causes the Condition Code to be set is in the following table.

Processor Registers Affected

CC

Condition Code Setting

	001	000
Register zero greater than Register r	0	1
Register zero equal to Register r	0	0
Register zero less than Register r	1	0

COMPARE IMMEDIATE

(Immediate Addressing)

Mnemonic

COMI,r

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to be compared to the contents of the second byte of this instruction. The comparison will be performed in either the "arithmetic" or "logical" mode depending on the setting of the COM bit in the Program Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive binary numbers; when COM=0, the values will be treated as 8-bit two's complement numbers.

The execution of this instruction *only* causes the Condition Code to be set as in the following table.

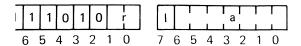
Processor Registers Affected

CC

Candition	Cada	Cottina
Condition	Code	Setting

	CCT	CCU
Register r greater than v	0	1
Register r equal to v	0	0
Register r less than v	1	0

OMPARE RELATIVE


(Relative Addressing)

nemonic

COMR,r

(*)a

nary Code

kecution Time

3 cycles (9 clock periods)

escription

This two-byte instruction causes the contents of the specified register r to compared to the contents of the memory byte pointed to by the effective ldress. The comparison will be performed in either the "arithmetic" or ogical" mode depending upon the setting of the COM bit in the Program ratus Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive nary numbers; when COM=0, the values will be treated as 8-bit, two's implement numbers.

The execution of this instruction *only* causes the Condition Code to be set in the following table.

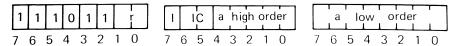
ocessor Registers Affected

CC

ondition Code Setting

	001	000
Register r greater than memory byte	0	1
Register r equal to memory byte	0	0
Register r less than memory byte	1	0

COMPARE ABSOLUTE


(Absolute Addressing

Mnemonic

COMA,r

(*)a(,X)

Binary Code

Execution Time

4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to b compared to the contents of the memory byte pointed to by the effectiv address. The comparison will be performed in either the "arithmetic" c "logical" mode depending on the setting of the COM bit in the Program Status Word.

Where COM=1 (logical mode), the values will be treated as 8-bit, positive binary numbers; when COM=0 (arithmetic mode), the values will be treated as 8-bit, two's complement numbers.

Indirect addressing and/or indexing may be specified. If indexing is specified, bits 1 and 0, byte 0, indicate the index register and the destination c the operation implicitly becomes register zero.

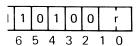
The execution of this instruction *only* causes the Condition Code to be se as in the following table.

Processor Registers Affected

CC

Condition	Code	Setting
Condition	Ouc	octing

	CCT	CCC
Register r greater than memory byte	0	1
Register r equal to memory byte	0	0
Register r less than memory byte	1	0

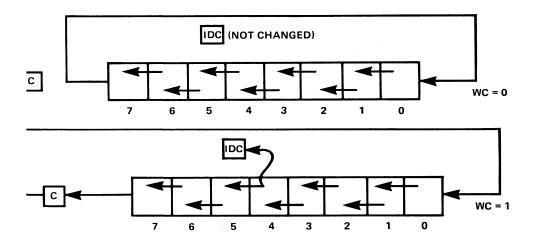

OTATE REGISTER LEFT

(Register Addressing)

nemonic

RRL,r

nary Code


recution Time

2 cycles (6 clock periods)

escription

This one-byte instruction causes the contents of the specified register r to shifted left one bit. If the WC bit in the Program Status Word is set to ro, bit #7 of register r flows into bit #0; if WC=1, then bit #7 flows into e Carry bit and the Carry bit flows into bit #0.

Register bit #4 flows into the IDC if WC=1.

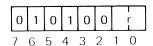
te: Whenever a rotate causes bit #7 of the specified register to change planity, the OVF bit is set in the PSL.

ocessor Registers Affected

C, CC, IDC, OVF

Indition Code Setting

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

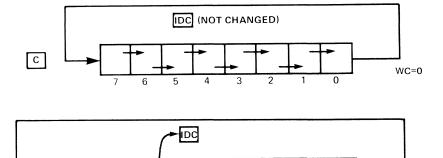

ROTATE REGISTER RIGHT

(Register Addressing

Mnemonic

RRR,r

Binary Code


Execution Time

2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to be shifted right one bit. If the WC bit in the Program Status Word is set to zero, bit #0 of the register r flows into bit #7; if WC=1, then bit #0 of the register r flows into the Carry bit and the Carry bit flows into bit #7

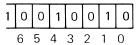
Register bit #6 flows into the IDC if WC=1.

Note: Whenever a rotate causes bit #7 of the specified register to chang polarity, the OVF bit is set in the PSL.

Processor Registers Affected

C, CC, IDC, OVF

Condition Code Setting


Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0

OAD PROGRAM STATUS, UPPER

Inemonic

LPSU

inary Code

xecution Time

2 cycles (6 clock periods)

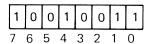
escription

This one-byte instruction causes the current contents of the Upper rogram Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments. Bits #4 and #3 of the PSU are unassigned and will always be regarded as containing zeroes.

rocessor Registers Affected

F, II, SP


Condition Code Setting

LOAD PROGRAM STATUS, LOWER

Mnemonic

LPSL

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

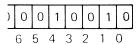
This one-byte instruction causes the current contents of the Lowe Program Status Byte to be replaced with the contents of register zero

See Program Status Word description for bit assignments.

Processor Registers Affected

CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting


The CC will take on the value in bits #7 and #6 of register zero.

TORE PROGRAM STATUS, UPPER

Inemonic

SPSU

inary Code

xecution Time

2 cycles (6 clock periods)

escription

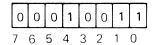
This one-byte instruction causes the contents of the Upper Program Status yte to be transferred into register zero.

See Program Status Word description for bit assignments. Bits #4 and #3 thich are unassigned will always be stored as zeroes.

rocessor Registers Affected

CC

ondition Code Setting


Zero	CC1	CC0		
Positive	0	1		
Zero	0	0		
Negative	1	0		

STORE PROGRAM STATUS, LOWER

Mnemonic

SPSL

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the Lower Progran Status Byte to be transferred into register zero.

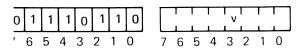
See Program Status Word description for bit assignments.

Processor Registers Affected

CC

Condition Code Setting

Register Zero	CC1	CCC		
Positive	0	1		
Zero	0	0		
Negative	1	0		


RESET PROGRAM STATUS UPPER, SELECTIVE

(Immediate Addressing)

1nemonic

PPSU

linary Code

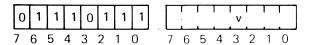
Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Upper Program status Byte to be selectively set to binary one. When this instruction is executed, each bit in the v field of the second byte of this instruction is ested for the presence of a one and if a particular bit in the v field contains one, the corresponding bit in the status byte is set to binary one. Any bits n the status byte which are not selected are not modified.

Processor Registers Affected


F, II, SP

Condition Code Setting

PRESET PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic

Binary Code

PPSL

Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Lower Program Status Byte to be selectively set to binary one. When this instruction is executed, each bit in the v field of the second byte of this instruction is tested for the presence of a one and if a particular bit in the v field contains a one, the corresponding bit in the status byte is set to binary one. Any bits in the status byte which are not selected are not modified.

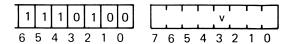
Processor Registers Affected

CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting

The CC bits may be set by the execution of this instruction.

LEAR PROGRAM STATUS UPPER, SELECTIVE


(Immediate Addressing)

nemonic

CPSU

. .

nary Code

ecution Time

3 cycles (9 clock periods)

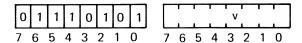
scription

This two-byte instruction causes individual bits in the Upper Program atus Byte to be selectively cleared. When this instruction is executed, each t in the v field of the second byte of this instruction is tested for the esence of a one and if a particular bit in the v field contains a one, the rresponding bit in the status byte is cleared to zero. Any bits in the status 7te which are not selected are not modified.

ocessor Registers Affected

F, II, SP

ondition Code Setting


CLEAR PROGRAM STATUS LOWER, SELECTIVE

(Immediate Addressing)

Mnemonic

CPSL

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Lower Program Status Byte to be selectively cleared. When this instruction is executed, each bit in the v field of the second byte of this instruction is tested for the presence of a one and if a particular bit in the v field contains a one, the corresponding bit in the status byte is cleared to zero. Any bits in the status byte which are not selected are not modified.

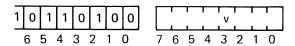
٧

Processor Registers Affected

CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting

The CC bits may be cleared by the execution of this instruction.


FEST PROGRAM STATUS UPPER, SELECTIVE

(Immediate Addressing)

Inemonic

TPSU

3inary Code

xecution Time

3 cycles (9 clock periods)

escription

This two-byte instruction tests individual bits in the Upper Program Status byte to determine if they are set to binary one. When this instruction is xecuted, each bit in the v field of this instruction is tested for the presence f a one, and if a particular bit in the v field contains a one, the corresponding it in the status byte is tested for a one or zero. The Condition Code is set a reflect the result of this operation.

If a bit in the v field is zero, the corresponding bit in the status byte is tot tested.

rocessor Registers Affected

CC

Condition Code Setting

	CCT	CCU
All of the selected bits in PSU are 1s	0	0
Not all of the selected bits in PSU are 1s	1	Ω

TEST PROGRAM STATUS LOWER, SELECTIVE

(Immediate Addressing

Mnemonic

TPSL

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the Lower Program Status Byte to determine if they are set to binary one. When this instruction is executed, each bit in the v field of this instruction is tested for a one, and if a particular bit in the v field contains a one, the corresponding bit in the status byte is tested for a one or zero. The Condition Code is set to reflect the result of this operation.

v

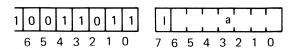
Processor Registers Affected

CC

Condition Code Setting

	CCT	CCO
All of the selected bits in PSL are 1s	0	0
Not all of the selected bits in PSL are 1s	1	0

ERO BRANCH RELATIVE


(Relative Addressing)

nemonic

ZBRR

(*)a

nary Code

xecution Time

3 cycles (9 clock periods)

escription

This two-byte unconditional relative branch instruction directs the rocessor to calculate the effective address differently than the usual alculation for the Relative Addressing mode.

The specified value, a, is interpreted as a relative displacement from page ero, byte zero. Therefore, displacement may be specified from -64 to +63 ytes. The address calculation is modulo 8192_{10} , so the negative dislacement actually will develop addresses at the end of page zero. For xample, ZBRR -8, will develop an effective address of 8184_{10} , and a BRR +52 will develop an effective address of 52_{10} .

This instruction causes the processor to clear, address bits 13 and 14, the age address bits; and to replace the contents of the Instruction Address legister with the effective address of the instruction. This instruction may e executed anywhere within addressable memory.

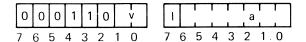
Indirect addressing may be specified.

rocessor Registers Affected

None

Condition Code Setting

BRANCH ON CONDITION TRUE, RELATIVE


(Relative Addressing

Mnemonic

BCTR,v

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte conditional branch instruction causes the processor to fetch the next instruction to be executed from the memory location pointed to by the effective address only if the two-bit v field matches the curren Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched from the location following the second byte of this instruction.

Indirect addressing may be specified.

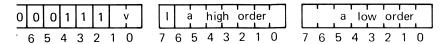
If the v field is set to 3_{16} , an unconditional branch is effected.

Processor Registers Affected

None

Condition Code Setting

RANCH ON CONDITION TRUE, ABSOLUTE


(Absolute Addressing)

Inemonic

BCTA,v

(*)a

linary Code

Execution Time

3 cycles (9 clock periods)

Description

This three-byte conditional branch instruction causes the processor to etch the next instruction to be executed from the memory location pointed o by the effective address only if the two-bit v field matches the two-bit londition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched rom the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 3_{16} , an unconditional branch is effected.

'rocessor Registers Affected

None

Condition Code Setting

BRANCH ON CONDITION FALSE, RELATIVE

(Relative Addressing

Mnemonic

BCFR,v

(*)a

Binary Code

1	0	0	1	1	0		- > -		ı		1	1	а	T -		
7	6	5	4	3	2	1	0	-	7	6	5	4	3	2	1	0

Execution Time

3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to fetch the nex instruction to be executed from the memory location pointed to by the effective address only if the two-bit v field does not match the two-bit Condition Code field (CC) in the Program Status Word. If there is no match the contents of the Instruction Address Register are replaced by the effective address.

If the v field and CC field match, the next instruction is fetched from the location following the second byte of this instruction.

Indirect addressing may be specified.

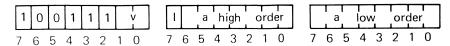
The v field may not be set to 3_{16} as this bit combination is used for the ZBRR operation code.

Processor Registers Affected

None

Condition Code Setting

BRANCH ON CONDITION FALSE, ABSOLUTE


(Absolute Addressing)

Mnemonic

BCFA,v

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to fetch the next instruction to be executed from the memory location pointed to by the effective address only if the two-bit v field does not match the two-bit Condition Code field (CC) in the Program Status Word. If there is no match, the contents of the Instruction Address Register are replaced by the effective address.

If the v field and CC field match, the next instruction is fetched from the location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 3_{16} as this bit combination is used for the BXA operation code.

Processor Registers Affected

None

Condition Code Setting

BRANCH ON INCREMENTING REGISTER, RELATIVE (Relative Addressing

Mnemonic BIRR,r (*)a

Binary Code

1 1 0 1 1 0 r

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Execution Time

3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to increment the contents of the specified register by one. If the new value in the register is non-zero, the next instruction to be executed is taken from the memory location pointed to by the effective address, i.e., the effective address replaces the previous contents of the Instruction Address Register. If the new value in register r is zero, the next instruction to be executed follows the second byte of this instruction.

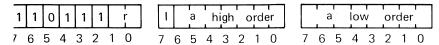
Indirect addressing may be specified.

Processor Registers Affected

None

Condition Code Setting

RANCH ON INCREMENTING REGISTER, ABSOLUTE


(Absolute Addressing)

/Inemonic

BIRA,r

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This three-byte branch instruction causes the processor to increment the ontents of the specified register by one. If the new value in the register is ion-zero, the next instruction to be executed is taken from the memory ocation pointed to by the effective address, i.e., the effective address eplaces the previous contents of the Instruction Address Register. If the new value of register r is zero, the next instruction to be executed follows he second byte of this instruction.

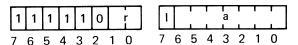
Indirect addressing may be specified.

'rocessor Registers Affected

None

Condition Code Setting

BRANCH ON DECREMENTING REGISTER, RELATIVE


(Relative Addressin

Mnemonic

BDRR,r

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to decrement the contents of the specified register by one. If the new value in the register non-zero, the next instruction to be executed is taken from the memoral location pointed to by the effective address, i.e., the effective address replaces the previous contents of the Instruction Address Register. If the new value in register r is zero, the next instruction to be executed follow the second byte of this instruction.

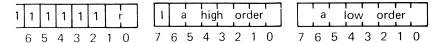
Indirect addressing may be specified.

Processor Registers Affected

None

Condition Code Setting

RANCH ON DECREMENTING REGISTER, BSOLUTE


(Absolute Addressing)

Inemonic

BDRA,r

(*)a

inary Code

xecution Time

3 cycles (9 clock periods)

escription

This three-byte instruction causes the processor to decrement the contents f the specified register by one. If the new value in the register is non-zero, ne next instruction to be executed is taken from the memory location ointed to by the effective address, i.e., the effective address replaces the revious contents of the Instruction Address Register. If the new address in egister r is zero, the next instruction to be executed follows the second byte f this instruction.

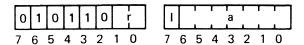
Indirect addressing may be specified.

rocessor Registers Affected

None

ondition Code Setting

BRANCH ON REGISTER NON-ZERO, RELATIVE


(Relative Addressing

Mnemonic

BRNR,r

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the contents of the specified register r to be tested for a non-zero value. If the register contains a non-zero value, the next instruction to be executed is taken from the location pointed to by the effective address, i.e., the effective address replaces the curren contents of the Instruction Address Register.

If the specified register contains a zero value, the next instruction i fetched from the location following the second byte of this instruction

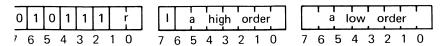
Indirect addressing may be specified.

Processor Registers Affected

None

Condition Code Setting

3RANCH ON REGISTER NON-ZERO, ABSOLUTE


(Absolute Addressing)

Vinemonic

BRNA,r

(*)a

3inary Code

Execution Time

3 cycles (9 clock periods)

Description

The three-byte branch instruction causes the contents of the specified register r to be tested for a non-zero value. If the register contains a non-zero value, the next instruction to be executed is taken from the location pointed to by the effective address, i.e., the effective address replaces the contents of the Instruction Address Register.

If the specified register contains a zero value, the next instruction is fetched from the location following the third byte of this instruction.

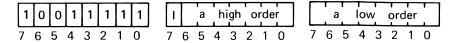
Indirect addressing may be specified.

Processor Registers Affected

None

Condition Code Setting

BRANCH INDEXED, ABSOLUTE


(Absolute Addressin

Mnemonic

BXA

(*)a,X

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This three-byte branch instruction causes the processor to perform a unconditional branch. Indexing is required and register #3 must be specifie as the index register because the entire first byte of this instruction i decoded by the processor. When executed, the content of the Instructio Address Register (IAR) is replaced by the effective address.

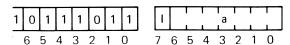
If indirect addressing is specified, the value in the index register is adde to the indirect address to calculate the effective branch address.

Processor Registers Affected

None

Condition Code Setting

ERO BRANCH TO SUBROUTINE, RELATIVE


(Relative Addressing)

Inemonic

ZBSR

(*)a

inary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte unconditional subroutine branch instruction directs the processor to calculate the effective address differently than the usual calculation for the Relative Addressing mode.

The specified value a is interpreted as a relative displacement from page zero, byte zero. Therefore, displacement may be specified from -64 to +63 bytes. The address calculation is modulo 8192_{10} , so the negative displacement will develop addresses at the end of page zero. For example, ZBSR -10, will develop an effective address of 8182_{10} , and ZBSR 31 will develop in effective address of 31_{10} .

This instruction causes the processor to clear the page address bits, address bits 14 and 13, and may be executed anywhere within addressable memory.

Indirect addressing may be specified.

When executed, this instruction causes the Stack Pointer to be increnented by one, the address of the byte following this instruction is pushed nto the Return Address Stack (RAS), and control is transferred to the effective address.

Processor Registers Affected

SP

Condition Code Setting

BRANCH TO SUBROUTINE ON CONDITION TRUE, (Relative Addressing RELATIVE

Mnemonic

BSTR,v

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte conditional subroutine branch instruction causes the processor to perform a subroutine branch *only* if the two-bit v field matche the current Condition Code field (CC) in the Program Status Word. If the fields match, the Stack Pointer is incremented by one and the curren contents of the Instruction Address Register, which points to the byte following this instruction, is pushed into the Return Address Stack. The effective address replaces the previous contents of the IAR.

If the v field and CC field do not match, the next instruction is fetched from the location following the second byte of this instruction and the SP i unaffected.

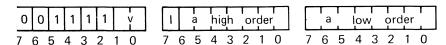
Indirect addressing may be specified.

If v is set to 3₁₆, the BSTR instruction branches unconditionally.

Processor Registers Affected

SP

Condition Code Setting


3RANCH TO SUBROUTINE ON CONDITION TRUE, (Absolute Addressing) ABSOLUTE

Vinemonic

BSTA,v

(*)a

3inary Code

Execution Time

3 cycles (9 clock periods)

Description

This three-byte conditional subroutine branch instruction causes the processor to perform a subroutine branch only if the two-bit v field matches the current Condition Code Field (CC) in the Program Status Word. If the fields match, the Stack Pointer is incremented by one and the current contents of the Instruction Address Register, which points to the byte following this instruction is pushed into the Return Address Stack. The effective address replaces the previous contents of the IAR.

If the v field and the CC field do not match, the next instruction is fetched from the location following the third byte of this instruction and the Stack Pointer is unaffected.

Indirect addressing may be specified.

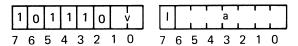
If v is set to 3_{16} , the BSTA instruction branches unconditionally.

Processor Registers Affected

SP

Condition Code Setting

BRANCH TO SUBROUTINE ON CONDITION FALSE, RELATIVE


(Relative Addressing

Mnemonic

BSFR,v

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte conditional subroutine branch instruction causes the processor to perform a subroutine branch *only* if the two-bit v field does *no* match the current Condition Code field (CC) in the Program Status Word. I the fields do not match, the Stack Pointer is incremented by one and the current content of the Instruction Address Register, which points to the location following this instruction, is pushed into the Return Address Stack The effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

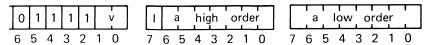
The v field may not be coded as 3_{16} because this combination is used for the ZBSR operation code.

Processor Registers Affected

SP

Condition Code Setting

RANCH TO SUBROUTINE ON CONDITION ALSE, ABSOLUTE


(Absolute Addressing)

nemonic

BSFA.v

(*)a

nary Code

ecution Time

3 cycles (9 clock periods)

scription

This three-byte conditional subroutine branch instruction causes the ocessor to perform a subroutine branch *only* if the two-bit v field does *not* atch the current Condition Code (CC) in the Program Status Word. If the elds do not match, the Stack Pointer is incremented by one and the current ontent of the Instruction Address Register, which points to the location llowing this instruction, is pushed into the Return Address Stack. The fective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the cation following this instruction and the SP is unaffected.

Indirect addressing may be specified.

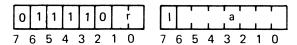
The v field may not be coded as 3_{16} as this combination is used for the SXA operation code.

ocessor Registers Affected

SP

ondition Code Setting

BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, RELATIVE


(Relative Addressin

Mnemonic

BSNR,r

(*)a

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte subroutine branch instruction causes the contents of th specified register r to be tested for a non-zero value. If the register contains non-zero value, the next instruction to be executed is taken from th location pointed to by the effective address. Before replacing the contents c the Instruction Address Register with the effective address, the Stack Pointe (SP) is incremented by one and the address of the byte following th instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction fetched from the location following this instruction.

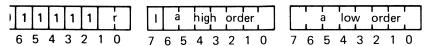
Indirect addressing may be specified.

Processor Registers Affected

SP

Condition Code Setting

RANCH TO SUBROUTINE ON NON-ZERO EGISTER, ABSOLUTE


(Absolute Addressing)

nemonic

BSNA,r

(*)a

nary Code

kecution Time

3 cycles (9 clock periods)

escription

This three-byte subroutine branch instruction causes the contents of the pecified register r to be tested for a non-zero value. If the register contains a pn-zero value, the next instruction to be executed is taken from the cation pointed to by the effective address. Before replacing the current pntents of the Instruction Address Register (IAR) with the effective ldress, the Stack Pointer (SP) is incremented by one and the address of the yte following the instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is stched from the location following this instruction.

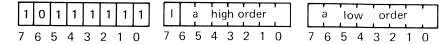
Indirect addressing may be specified.

rocessor Registers Affected

SP

ondition Code Setting

BRANCH TO SUBROUTINE INDEXED, ABSOLUTE, UNCONDITIONAL


(Absolute Addressing

Mnemonic

BSXA

(*)a,X

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

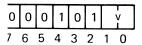
This three-byte instruction causes the processor to perform an unconditional subroutine branch. Indexing is required and register #3 must be specified as the index register because the entire first byte of this instruction is decoded by the processor.

Execution of this instruction causes the Stack Pointer (SP) to b incremented by one, the address of the byte following this instruction pushed into the Return Address Stack (RAS), and the effective address replaces the contents of the Instruction Address Register.

If indirect addressing is specified, the value in the index register is adde to the indirect address to calculate the effective address.

Processor Registers Affected

SP


Condition Code Setting

RETURN FROM SUBROUTINE, CONDITIONAL

Inemonic

RETC,v

3inary Code

Execution Time

3 cycles (9 clock periods)

Description

This one-byte instruction is used by a subroutine to conditionally effect a eturn of control to the program which last issued a subroutine branch nstruction.

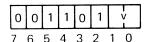
If the two-bit v field in the instruction matches the Condition Code field CC) in the Program Status Word, the following action is taken: The address contained in the top of the Return Address Stack replaces the previous contents of the Instruction Address Register (IAR), and the Stack Pointer is lecremented by one.

If the v field does not match CC, the return is not effected and the next nstruction to be executed is taken from the location following this nstruction.

If v is specified as 3_{16} , the return is executed unconditionally.

Processor Registers Affected

SP


Condition Code Setting

RETURN FROM SUBROUTINE AND ENABLE INTERRUPT, CONDITIONAL

Mnemonic

RETE,v

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This one-byte instruction is used by a subroutine to conditionally effect a return of control to the program which last issued a subroutine branch instruction. Additionally, if the return is effected, the Interrupt Inhibit (II) bit in the Program Status Word is cleared to zero, thus enabling interrupts. This instruction is mainly intended to be used by an interrupt handling routine because receipt of an interrupt causes a subroutine branch to be effected and the Interrupt Inhibit bit to be set to 1. The interrupt handling routine must be able to return and enable simultaneously so that the interrupt routine cannot be interrupt unless that is specifically desired.

If the two-bit v field in the instruction matches the Condition Code field (CC) in the Program Status Word, the following action is taken: The address contained in the top of the Return Address Stack (RAS) replaces the previous contents of the Instruction Address Register (IAR), the Stack Pointer is decremented by one and the II bit is cleared to zero.

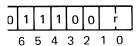
If the v field does not match CC, the return is not effected and the nexinstruction to be executed is taken from the location following this instruction

If v is specified as 3_{16} , the return is executed unconditionally.

Processor Registers Affected

SP, II

Condition Code Setting


IEAD DATA

(Register Addressing)

/Inemonic

REDD,r

3inary Code

xecution Time

2 cycles (6 clock periods)

Pescription

This one-byte input instruction causes a byte of data to be transferred rom the data bus into register r. Signals on the data bus are considered to be rue signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation lequest (OPREQ) line, simultaneously switching the M/\overline{IO} line to \overline{IO} and he \overline{R}/W to \overline{R} (Read). Also, during the OPREQ signal, the D/\overline{C} line switches o D (Data) and the E/\overline{NE} switches to \overline{NE} (Non-extended).

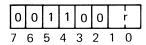
See Input/Output section of this manual.

'rocessor Registers Affected

CC

Condition Code Setting

Register r	CC1	CCO
Positive	0	1
Zero	0	0
Negative	1	0


READ CONTROL

(Register Addressin

Mnemonic

REDC,r

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This one-byte input instruction causes a byte of data to be transferre from the data bus into register r. Signals on the data bus are considered to b true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operatic Request (OPREQ) line, simultaneously switching the M/\overline{IO} line to \overline{IO} , the \overline{R}/W line to \overline{R} (Read), the D/\overline{C} line to \overline{C} (Control), and the $E/N\overline{E}$ line to N (Non-extended).

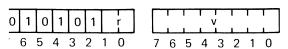
See Input/Output section of this manual.

Processor Registers Affected

CC

Condition Code Setting

Register r	CC1	CC0
Positive	0	1
Zero	0	0
Negative	1	0


EAD EXTENDED

(Immediate Addressing)

Inemonic

REDE,r

inary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte input instruction causes a byte of data to be transferred rom the data bus into register r. During the execution of this instruction, he content of the second byte of this instruction is made available on the ddress bus. Signals on the data bus are true signals, i.e., a high level is nterpreted as a one.

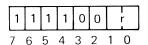
During execution, the processor raises the Operation Request (OPREQ) ine, simultaneously placing the contents of the second byte of the nstruction on the address bus. During the OPREQ signal, the M/\overline{IO} line is witched to \overline{IO} , the \overline{R}/W line to \overline{R} (Read), line and the E/\overline{NE} line to E Extended).

See Input/Output section of this manual.

'roc	essor	Reg	gi s 1	ters	Αf	fected	ļ	
		_		_				

CC

Condition Code Setting	Register r	CC1	CC0
	Positive	0	1
	Zero	0	0
	Negative	1	0


WRITE DATA

(Register Addressing

Mnemonic

WRTD,r

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be mad available to an external device. The byte to be output is taken from register and made available on the data bus. Signals on the data bus are true signals i.e., high levels are ones.

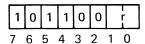
When executing this instruction, the processor raises the Operation Reques (OPREQ) line and simultaneously places the data on the Data Bus. Along with the OPREQ, the M/\overline{IO} line is switched to \overline{IO} , the \overline{R}/W signal is switched to W (Write), and a Write Pulse (WRP) is generated. Also, during the valid OPREQ signals, the D/\overline{C} line is switched to D (Data) and the E/\overline{NE} line i switched to \overline{NE} (Non-extended).

See Input/Output section of this manual.

Processor Registers Affected

None

Condition Code Setting


NRITE CONTROL

(Register Addressing)

Mnemonic

WRTC,r

Binary Code

Execution Time

2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be made available to an external device.

The byte to be output is taken from register r and made available on the data bus. Signals on the data bus are true signals, i.e., high levels are ones

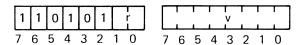
When executing this instruction, the processor raises the Operation Request (OPREQ) line and simultaneously places the data on the Data Bus. Along with the OPREQ signal, the M/\overline{IO} line is switched to \overline{IO} , the \overline{R}/W signal is switched to W (Write), the D/\overline{C} line is switched to \overline{C} (Control), the E/\overline{NE} is switched to \overline{NE} (Non-extended), and a Write Pulse (WRP) is generated.

See the Input/Output section of this manual.

Processor Registers Affected

None

Condition Code Setting


WRITE EXTENDED

(Immediate Addressing

Mnemonic

WRTE,r

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte output instruction causes a byte of data to be made available to an external device. The byte to be output is taken from register r and is made available on the data bus. Simultaneously, the data in the second byte of this instruction is made available on the address bus. The second byte, v, may be interpreted as a device address.

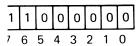
Signals on the busses are true levels, i.e., high levels are ones.

When executing this instruction, the processor raises the Operatior Request (OPREQ) line and simultaneously places the data from register r or the data bus and the data from the second byte of this instruction on the address bus. Along with OPREQ, the M/\overline{IO} line is switched to \overline{IO} , the \overline{R}/W line is switched to W (Write), the E/\overline{NE} line is switched to E (Extended), and a Write Pulse (WRP) is generated.

See the Input/Output section of this manual.

Processor Registers Affected

None


Condition Code Setting

JO OPERATION

∕Inemonic

NOP

3inary Code

Execution Time

2 cycles (6 clock periods)

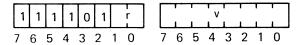
Description

This one-byte instruction causes the processor to take no action upon lecoding it. No registers are changed, but fetching and executing a NOP nstruction requires two processor cycles.

Processor Registers Affected

None

Condition Code Setting


TEST UNDER MASK IMMEDIATE

(Immediate Addressing)

Mnemonic

TMI,r

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the specified register r to determine if they are set to binary one. During execution, each bit in the v field of the instruction is tested for a one, and if a particular bit in the v field contains a one, the corresponding bit in register r is tested for a one or zero. The condition code is set to reflect the result of the operation.

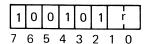
If a bit in the v field is zero, the corresponding bit in register r is not tested.

Processor Registers Affected

CC

Condition Code Setting

	CCT	CCO
All of the selected bits are 1s	0	0
Not all of the selected bits are 1s	1	0


DECIMAL ADJUST REGISTER

(Register Addressing)

Mnemonic

DAR,r

Binary Code

Execution Time

3 cycles (9 clock periods)

Description

This one-byte instruction conditionally adds a decimal ten (two's complement negative six in a four-bit binary number system) to either the high order 4 bits and/or the low order 4 bits of the specified register r.

The truth table below indicates the logical operation performed. The operation proceeds based on the contents of the Carry (C) and Interdigit Carry (IDC) bits in the Program Status Word. The C and IDC remain unchanged by the execution of this instruction.

This instruction allows BCD sign magnitude arithmetic to be performed on packed digits by the following procedure.

BCD Addition:

- 1. add 66_{16} to augend
- 2. perform addition of addend and augend
- 3. perform DAR instruction

BCD Subtraction:

- 1. perform subtraction (2's complement of subtrahend is added to the minuend)
- 2. perform DAR instruction

Since this operation is on sign-magnitude numbers, it is necessary to establish the sign of the result prior to executing in order to properly control the definition of the subtrahend and minuend.

Carry	Interdigit Carry	Added to Register r
0	0	AA ₁₆
0	1	A0 ₁₆
1	1	00 16
1	0	0A ₁₆

Processor Registers Affected

CC

Condition Code Setting

The Condition Code is set to a meaningless value.

HALT, ENTER WAIT STATE

Mnemonic

HALT

Binary Code

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the processor to stop executing instructions and enter the WAIT state. The RUN/\overline{WAIT} line is set to the WAIT state

The only way to enter the RUN state after a HALT has been executed, is to reset the 2650 or to interrupt the processor.

Processor Registers Affected

None

Condition Code Setting

APPENDIX A

MEMORY INTERFACE

Figure A-1 shows a complete interface between the 2650 and a 256 x R/W random access memory. Since the memory chips are MOS they can b driven directly by the address lines and the control lines. The gates show are assumed to be standard 7400 series TTL so that some signal buffering i assumed to be necessary. If CMOS or 74LS gates are used, some of th buffering inverters may not be necessary. The same is true of the data bus Depending on the number and nature of the I/O devices being interfaced, i may or may not be necessary to buffer the data bus.

Because the data in and data out signals for the memory chips are bussed together, care must be taken to avoid overlap of drivers on the data bus. In this example, the problem is solved by using the write pulse into the memory as the chip select input instead of using the \overline{R}/W line as is conventionally done. The \overline{R}/W output from the processor is a level and is valid when Operation Request is true. Write Pulse from the processor is gated with the OPREQ and M/\overline{IO} signals to assure proper operation.

For a large memory the next address line (ADR8) could be gated into the chain that generates the chip select signals, with similar write pulse generation for the higher order memory.

The $\overline{\text{OPACK}}$ signal is assumed to be false for the duration of all memory operations. This eliminates some gating from that control input. No problems will be encountered with this approach as long as the memories ar fast enough for the clock speed being used with the processor. At a cycle time of $2.4\mu\text{s}$, data must be returned to the processor by $1\mu\text{s}$ or less time from the OPREQ leading edge.

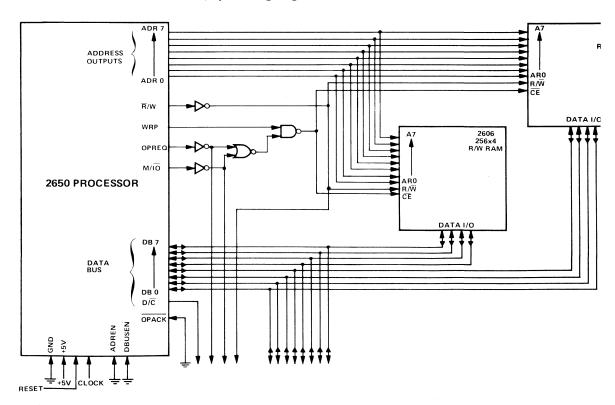
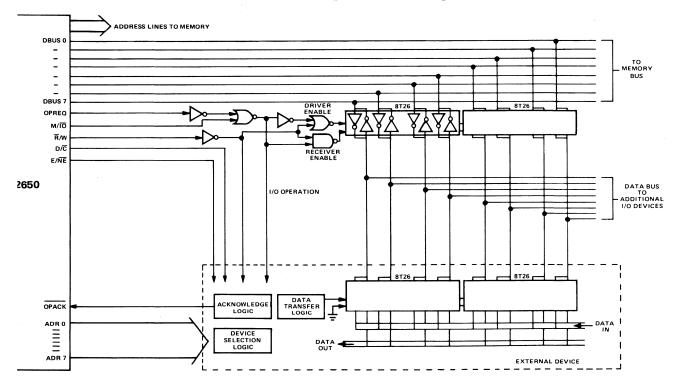


Figure A-1

APPENDIX B

OINTERFACE

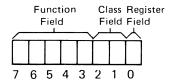

Figure B-1 shows one of many possible methods for buffering the data bus and interfacing it to several devices. There are advantages to be gained by sing the Signetics 8T26. It has a PNP input buffer that keeps its low input well current at $200\mu A$ instead of 1.6mA. This lightens the load on the rocessor bus drivers and allows the processor to interface to several 8T26's necessary. The 8T26 has four complete driver/receiver pairs in a package, two packages can fully buffer the 8-bit data bus.

The control signals generated for use with I/O interfaces are very raightforward. Combining M/\overline{IO} with OPREQ generates a signal that can ften be used conveniently at the I/O devices instead of having each device erive the signal individually. In the figure it is gated with the Read/Write Iformation in order to control the bus buffer.

Each I/O device must handle four basic processor interface functions:

- i) bus interface
-) data transfer logic
- :) device selection logic
- 1) transfer acknowledge logic

Depending on the nature of the complete system and the particular I/O evice, these functions can be either extremely simple or fairly complex.


igure B-1

APPENDIX C

INSTRUCTIONS, ADDITIONAL INFORMATION

The 2650 uses variable length instructions that are one, two or three bytes long. The instruction length is determined by the nature of the operation being performed and the addressing mode being used. Thus, the instruction can be expressed in one byte when no memory operand addressing is necessary, as with register-to-register or rotate instructions. On the other hand, for direct addressing instructions, three bytes are allocated. The relative and immediate addressing modes allow two-byte instructions to be implemented.

The 2650 uses explicit operand addressing; that is, each instruction specifies the operand address. The first byte of each 2650 instruction is divided into three fields and specifies the operation to be performed, the addressing mode to be used and, where appropriate, the register or condition code mask to be used.

The CLASS field specifies the instruction group, the major address mode and the number of processor cycles required for each instruction. The CLASS field also specifies, with one exception, the number of bytes in the instruction. The following table shows the specifications for each class.

CLASS FIELD	INSTRUCTION GROUP	ADDRESS REGISTER	BYTE LENGTH	DIRECT CYCLES
0	Arithmetic	Register	1	2
1	Arithmetic	Immediate	2	2
2	Arithmetic	Relative	2	3
3	Arithmetic	Absolute	3	4
4	Control (inc. rotate)		1	2
- 5	Control		1-2	3
6	Branch	Relative	2	3
7	Branch	Absolute	3	3

Within the arithmetic groups (classes 0, 1, 2, and 3) the function field specifies one of the eight operations as follows:

FUNCTION	ARITHMETIC
FIELD	OPERATION
0	LOAD
1	EXCLUSIVE OR
2	AND
3	INCLUSIVE OR
4	ADD
5	SUBTRACT
6	STORE
7	COMPARE

Within the branch group (classes 6 and 7) the function field specifies one of eight operations as follows:

FUNCTION FIELD	BRANCH OPERATION				
0	Branch On Condition True				
1	Branch To Subroutine On Condition True				
2	Branch On Register Non-Zero				
3	Branch To Subroutine On Register Non-Zero				
4	Branch On Condition False				
5	Branch To Subroutine On Condition False				
6	Branch On Incrementing Register				
7	Branch On Decrementing Register				

There is very little pattern to the use of the function field within the control group (classes 4 and 5).

The register field is used to specify the index register, to specify the operand source register, to specify the destination register, or a condition code mask. For the register-to-register and the indexed instructions, register zero is implicitly assumed to be the source or the destination of the instruction. For all other instructions that involve a register, the register field allows any of four registers to be specified, except for indexed branch instructions which require that register 3 be specified.

Conditional branch instructions utilize the 2-bit register field as a condition code mask field. A few instructions use the register field as part of the operation code and consequently allow no variation in register usage.

APPENDIX D

INSTRUCTION SUMMARY

SIGNETICS 2650 PROCESSOR

ALPHABETIC LISTING

HEX	OP	Pg.	HEX	OP	Pg.	HEX	OP	Pg.
8C	ADDA	58	98	BCFR	94	BC	BSFA	107
8D			99			BD		
8E			9A			BE		
8F					,			_
84	ADDI	56	1C	BCTA	93	B8	BSFR	106
85			1D			B9		
86			1E			BA		
87			1F					_
88	ADDR	57	18	BCTR	92	7C	BSNA	109
89			19			7D		
8A 8B			1A			7E		
	4007		1B			7F		-
80 81	ADDZ	55	FC	BDRA	99	78	BSNR	108
81 82			FD			79 7.4		
83			FE			7A		
4C	ANDA	66	FF			7B		
4C 4D	ANDA	00	F8	BDRR	98	3C	BSTA	105
4D 4E			F9			3D		
4F			FA FB			3E 3F		
44	ANDI	64		DIDA	0.7		DOTE	-104
45	ANDI	04	DC	BIRA	97	38	BSTR	104
46			DD DE			39 3A		
47			DF			3A 3B		
48	ANDR	65		DIDD	00	BF	DCVA	-
49	, , 5 , ,		D8 D9	BIRR	96	ВГ	BSXA	110
4A			D9 DA					
4B			DB					
41	ANDZ	63	5C	BRNA	101	9F	BXA	102
42			5D	DINIA	101	31	מאמ	102
43			5E					
			5F					
9C	BCFA	95	58	BRNR	100	EC	сøма	7 8
9D			59	DITIVIT		ED	רווויקט	. 0
9E			5A			EE		
			5B			EF		

1EX	OP	Pg.	HEX	OP	Pg.	HEX	OP	Pg.
:4 :5	сфиі	76	40	HALT	122	93	LPSL	82
:6 :7						92	LPSU	81
:8 :9	сøмп	77	6C 6D 6E	IØRA	 70	C0	NØP	119
ΞB			6F					
∃0 ∃1	сøмz	75	64 65	IØRI	68	77	PPSL	86
E2 E3			66 67		_	76	PPSU	. 85
' 5	CPSL	88	68 69	IØRR	69	30 31	REDC	114
'4	CPSU	87 -	6A 6B			32 33		
94 95 96 97	DAR	121	60 61 62 63	IØRZ	67	70 71 72 73	REDD	- 113
2C 2D 2E 2F	EØRA	74	OC OD OE OF	LØDA	51	54 55 56 57	REDE	- 115
24 25 26 27	EØRI	72	04 05 06 07	LØDI	49	14 15 16 17	RETC	_ 111
28 29 2A 2B	EØRR	73	08 09 0A 0B	LØDR	50	34 35 36 37	RETE	- 112
20 21 22 23	EØRZ	- 71	00 01 02 03	LØDZ	48	D0 D1 D2 D3	RRL	- 79

HEX	OP	Pg.	HEX	OP Pg.
			F4	TMI 120
50	RRR	80	F5	
51			F6	
52			F7	
53		-	B5	TPSL 90
13	SPSL	84	B4	TPSU 89
12	SPSU	83	B0	WRTC 117
CC	STRA	54	B1	
CD			B2	
CE			В3	
CF		_	F0	WRTD 116
C8	STRR	53	F1	
C9			F2	
CA			F3	
СВ			D4	WRTE 118
C1	STRZ	52	D5	
C2			D6	
C3			D7	
AC	SUBA	62	9B	ZBRR 91
AD			ВВ	ZBSR 103
AE				
AF				
A4	SUBI	60		
A5				
A6				
A7				
A8	SUBR	61		
A9				
AA				
AB	01107	FO		
A0 A1	SUBZ	59		
A1 A2				
A2 A3				
73				

SIGNETICS 2650 PROCESSOR

NUMERIC LISTING

HEX	ОР	Pg.	HEX	ОР	Pg.	HEX	OP	Pg.
00	LØDZ	48	24	EØRI	72	44	ANDI	64
01			25			45		
02			26			46		
03			27			_47		_
04	LØDI	- 49	28	EØRR	73	48	ANDR	65
05			29			49		
06			2A			4A		
07			2B			4B		_
08	LØDR	- 50	2C	EØRA	74	4C	ANDA	66
09			2D			4D		
0A			2E			4E		
0B		_	2F		•	4F		_
0C	LØDA	51	30	REDC	114	50	RRR	80
0D			31			51		
0E			32			52		
0F			33		•	_53		_
12	SPSU	83	34	RETE	112	54	REDE	115
	·	_	35			55		
13	SPSL	84	36			56		
	· dans	_	_37			_57		_
14	RETC	111	38	BSTR	104	58	BRNR	100
15			39			59		
16			3A			5A		
17			3B			_5B		_
18	BCTR	92	3C	BSTA	105	5C	BRNA	101
19			3D			5D		
1A			3E			5E		
1B			3F			_5F		_
1C	ВСТА	93	40	HALT	122	60	IØRZ	67
1D						61		
1E						62		
1F		=				63		_
20	EØRZ	71	41	ANDZ	63	64	IØRI	68
21			42			65		
22			43			66		
23						67		

HEX	ОР	Pg.	HEX	ОР	Pg.	HEX	OP	Pg.
68	ıǿrr	69	88	ADDR	57	Α4	SUBI	60
69			89			A5		
6A			8A			A6		
6B			8B			_A7		
6C	IØRA	70	8C	ADDA	58	A8	SUBR	61
6D			8D			A9		
6E			8E			AA		
6F			_8F			AB		
70	REDD	113	92	LPSU	81	AC	SUBA	62
71					•	AD		
72			93	LPSL	82	ΑE		
73					•	_AF		
74	CPSU	87	94	DAR	121	В0	WRTC	117
•			95			B1		
75	CPSL	88	96			B2		
	-	•	97			В3		
76	PPSU	85	98 99	BCFR	94	В4	TPSU	89
77	PPSL	86	9A			B5	TPSL	90
		00					···	
78	BSNR	108	9B	ZBRR	91	B8	BSFR	106
79		100				В9		
7.A						ВА		
7B								
7C	BSNA	109	9C	BCFA	95	ВВ	ZBSR	103
7D			9D					
7E			9E					
7F								
80	ADDZ	55	9F	BXA	102	вС	BSFA	107
81						BD		
82						BE		
83					•			
84	ADDI	56	Α0	SUBZ	59	BF	BSXA	110
85			A1					
86			A2					
87			A3					
J.			5					

HEX	ОР	Pg.	HEX	OP	Pg.
C0	NØP	119	E4	сфиі	76
			E5	,	
			E6		
		_	E7		_
C1	STRZ	52	E8	CØMR	77
C2			E9		
C3			EA		
		-	EВ		_
C8	STRR	53	EC	сøма	78
C9			ED		
CA			EE		
СВ		_	EF		•
CC	STRA	54	F0	WRTD	116
CD			F1		
CE			F2		
CF		_	F3		_
D0	RRL	79	F4	TMI	120
D1			F5		
D2			F6		
D3			F7		-
D4	WRTE	118	F8	BDRR	98
D5			F9		
D6			FA		
D7		_	FB		_
D8	BIRR	96	FC	BDRA	99
D9			FD		
DA			FE		
DB		_	FF		
DC	BIRA	97			
DD					
DE					
DF		-			
E0	CØMZ .	75			
E1					
E2					
E3					

2650 INSTRUCTIONS

ORGANIZED BY FUNCTION

LOAD	STORE	Pg.	ARIT	нметіс	Pg.	ARIT	нметіс	Pg.
00	LØDZ	48	80	ADDZ	55	68	IØRR	69
01			81			69		
02			82			6A		
03			83			6B		
04	LØDI	49	.84	ADDI	56	6C	IØRA	70
05			85			6D		
06			86			6E		
07			87			6F		
08	LØDR	50	88	ADDR	57	20	EØRZ	71
09			89			21		
0A			8A			22		
0B			8B			_23		_
0C	LØDA	51	8C	ADDA	58	24	EØRI	72
0D			8D			25		
0E			8E			26		
0F			8F			_27		_
C1	STRZ	52	Α0	SUBZ	59	28	EØRR	73
C2			Α1			29		
C3			A2			2A		
			_A3			_2B		•
C8	STRR	53	A4	SUBI	60	2C	EØRA	74
C9			A5			2D		
CA			A6			2E		
СВ			_A7			2F		_
CC	STRA	54	A8	SUBR	61	41	ANDZ	63
CD			A9			42		
CE			AA			43		
CF			AB					
			AC	SUBA	62	44	ANDI	64
			AD			45		
			ΑE			46		
			AF			_47		
			60	IØRZ	67	48	ANDR	65
			61			49		
			62			4A		
			63			4B		
			64	IØRI	68	4C	ANDA	66
			65			4D		
			66			4E		
						4F		

3RAN	СН	Pg.	SUBROUTIN	E BRANCH	Pg.	COMPA	ARE	Pg.
8	BCTR	92	38	BSTR	104	E0	сøмz	75
9			39			E1		
A_{i}			3A			E2		
В			3B			E3		
С	ВСТА	93	3C	BSTA	105	E4	CØMI	76
l D			3D			E5		
ΙE			3E			E6		
۱F			. 3F			E7		
98	BCFR	94	B8	BSFR	106	E8	CØMR	77
3 9			B9			E9		
ЭA			BA			EA		
						EB		
€C	BCFA	95	BC	BSFA	107	EC	CØMA	78
∂D.			BD			ED		
ЭE			BE			EE		
				_		EF		_
58	BRNR	100	78	BSNR	108	INPUT	OUTPU1	Γ.
59			79			30	REDC	114
5A			7A			31		
ōΒ			7B			32		
5C	BRNA	101	7C	BSNA	109	33		
5D			7D			70	REDD	113
ōΕ			7E			71		
ōΕ			7 F			72		
58	BIRR	96	BF	BSXA	110	73		
D9						В0	WRTC	117
DА						B1		
ЭB						B2		
ЭC	BIRA	97	BB	ZBSR	103	В3		
DC						F0	WRTD	116
DΕ						F1		
ϽF						F2		
F8	BDRR	- 98	SUBR	OUTINE RE	ETURN	F3		
F9			14	RETC	111	54	REDE	- 115
FA			15			55		
FB			16			56		
FC	BDRA	99	17			57		
FD			34	RETE	112	D4	WRTE	118
FE			35			D5		
FF			36			D6		
9F	ВХА	102	37			D7		
9B	ZBRR	- 91						

	GRAM STATU	IS Pg.	MISCE	LLANEO	US Pg.
92	LPSU	81	C0	NØP	119
93	LPSL	82			
12	SPSU	83	40	HALT	122
13	SPSL	84			
74	CPSU	87	F4 F5	ТМІ	120
75	CPSL	88	F6 F7		
76	PPSU	85	94 95	DAR	121
77	PPSL	86	96 97		
B4	TPSU	89			
B5	TPSL	90			
ROTA	ATE INSTRUC	CTIONS			
D0 D1 D2 D3	RRL	79			
50 51 52 53	RRR	80		•	

2650

ASSEMBLER LANGUAGE MANUAL

CONTENTS

1	INTRODU	CTION						•									2
11	LANGUAG	E ELEMEN	NTS .													٠.	6
	CHARA	CTERS .															6
	SYMBO	LS															6
	CONST	ANTS															6
	MULTI	PLE CONST	TANT S	PECIF	ICA	TIO	NS						٠.				8
	EXPRE	SSIONS .															8
	SPECIA	L OPERAT	ORS.														S
111	SYNTAX.																10
		S															
		LS															
		LIC REFE															
		LIC ADDR															
IV	PROCESSO	OR INSTRU	CTIONS	S													14
V	DIRECTIV																
VI	THE ASSE																
		BLY LISTI															
																	-
APF	PENDIX A	SUMMAR	Y OF 26	50 IN	STR	UCI	ГΙΟ	ΝN	ΛNE	ΞM	ON	IIC:	s				32
APF	PENDIX B	NOTES A															
API	PENDIX C	ASC II A															
API	PENDIX D	COMPLET															
	PENDIX E	POWERS															
	PENDIX F	HEXADE															

I INTRODUCTION

The assembly language described in this document is a symbolic language designed specifically to facilitate the writing of programs for the Signetics 2650 processor. The 2650 Assembler is a program which accepts symbolic source code as input and produces a listing and/or an object module as output.

The assembler is written in standard FORTRAN IV and is available either through a timesharing service or in batch form directly from Signetics. This is done to assure compatibility and ease of installation on a user's own computer equipment. It is modular and may be executed in an overlay mode should memory restrictions make that necessary. The program is approximately 1,250 FORTRAN card images in length.

An attempt was made in the design of the language to make it similar to other contemporary assembler languages because it was felt that such similarity would reduce the learning time necessary to become proficient in this language. The 2650 assembler features forward references, self-defining constants, free format source code, symbolic addressing, syntax error checking, load module generation, and source statement listing.

In order to understand the 2650 instruction set, architecture, timing, interface requirements and electrical characteristics, the reader is referred to the Signetics 2650 Hardware Specification section.

The assembler is a two pass program that builds a symbol table, issues helpful error messages, produces an easily readable program listing and outputs a computer readable object (load) module.

The assembler features symbolic and relative addressing, forward references, complex expression evaluations and a versatile set of Pseudo-Operations. These features aid the programmer/engineer in producing well-documented, working programs in a minimum of time. Additionally, the assembler is capable of generating data in several number based systems as well as both ASCII and EBCDIC character codes.

Assembler Language

The assembler language provides a means to create a computer program. The features of the Assembler are designed to meet the following goals:

- Programs should be easy to create
- Programs should be easy to modify
- Programs should be easy to read and understand
- A machine readable, machine language module to be output

This assembler language has been developed with the following features:

- Symbolic machine operation codes (op-codes, mnemonics)
- Symbolic address assignment and references
- Relative addressing
- Data creation statements
- Storage reservation statements
- Assembly listing control statements
- Addresses can be generated as constants
- Character codes may be specified as ASCII or EBCDIC
- Comments and remarks may be encoded for documentation

As <u>Assembly language program</u> is a program written in <u>symbolic machine language</u>. It is comprised of <u>statements</u>. A statement is <u>either a symbolic machine instruction</u>, a pseudo-operation statement, or a comment.

The symbolic machine instruction is a written specification for a particuar machine operation expressed by symbolic operation codes and sometimes symbolic addresses or operands. For example:

LOC2

STRR, R0 SAV

Where:

LOC2

is a symbol which will represent the memory address of the instruction.

STRR

is a symbolic op-code which represents the bit pattern of the

"store relative" instruction.

R0

is a symbol which has been defined as register 0 by the

"EQU pseudo-op".

SAV

is a symbol which represents the memory location into which the contents of register 0 are to be stored.

A pseudo-operation statement is a statement which is not translated into 1 machine instruction, but rather is interpreted as a directive to the assembler program. Example:

SCHD

ACON

REDY

Where:

ACON

is a pseudo-op which directs the assembler program to allocate two bytes of memory.

REDY

is a symbol, representing an address. The assembler is directed to place the equivalent memory address into the byte

allocated space.

SCHD

is a symbol. The assembler is to assign the memory address of the first byte of the two allocated to this symbol.

Statements

Statements are always written in a particular format. The format is depicted below:

LABEL FIELD OPERATION FIELD OPERAND FIELD COMMENT FIELD

The statement is always assumed to be written on an 80 column data processing card or an 80 column card image.

The Label Field is provided to assign symbolic names to bytes of memory. If present, the Label Field must begin in logical column one.

The Operation Field is provided to specify a symbolic operation code or a pseudo-operation code. If present, the Operation Field must either begin past column one or be separated from logical column one by one or more blanks.

The Operand Field is provided to specify arguments for the operation in the Operation Field. The Operand Field, if present, is separated from the Operation Field by one or more blanks.

The <u>Comment Field</u> is provided to enable the assembly language programmer to optionally place an English message stating the purpose or intent of a statement or a group of statements. The Comment Field must be separated from the preceding field by one or more blanks.

Comment Statement

A Comment Statement is a statement that is not processed by the assembler program. It is merely reproduced on the assembly listing. A Comment Statement is indicated by encoding an asterisk in logic column one. Example:

*THIS IS A COMMENT STATEMENT

Logical columns 72-80 are never processed by the assembler, they are always reproduced on the assembly listing without processing. This field is a good place for sequence numbers, if desired.

Symbolic Addressing

When writing statements in symbolic machine language, i.e., assembler language, the machine operation code is usually expressed symbolically. For example, the machine instruction that stores data from register 0 into a memory location named SAV, may be expressed as:

STRA, RO SAV

The assembler, when translating this symbolic operation code and its arguments into machine language for the 2650, defines three bytes containing H'CC0020', where '0020' is the value of SAV.

The address of the translated bytes is known because the Assembly Program Counter is always set to the address of the next byte to be assembled.

The user can attach a label to an instruction:

SAVR STRR,RO SAV

The assembler, upon seeing a valid symbol in the label field, assigns the equivalent address to the label. In the given example, if the STRR instruction is to be stored in the address H'0127', then the symbol SAVR would be made equivalent to the value H'0127' for the duration of the assembly.

The symbol could then be used anywhere in the source program to refer to the address value or, more typically, it could be used to refer to the instruction location. The important concept is that the address of the instruction need not be known; only the symbol need to be used to refer to the instruction location. Thus, when branching to the STRR instruction, one could write:

BCTA,3 SAVR

When the three byte branch instruction is translated by the assembler,

the address of the STRR instruction is placed in the address field of the branch instruction.

It is also possible to use symbolic addresses which are near other locations to refer to those locations without defining new labels. For example:

	BCTR,3	BEG
	BCTR,0	BEG+4
	ANDZ	3
	BSTR,3	S+48
BEG	LODA,2	PAL
	HALT	
	SUBI,2	3

In the above example, the instruction "BCTR,3 BEG" refers to the LODA,2 PAL instruction. The instruction "BCTR,0 BEG+4" refers to the SUBI,2 3 instruction.

BEG+4 means the address BEG plus four bytes. This type of expression is called relative symbolic addressing and given a symbolic address; it can be used as a landmark to express several bytes before or after the symbolic address. Examples:

BCTR,3	PAL+23
BSTA,0	STT-18

The arguments are evaluated like any other expression and cannot exceed n value the maximum number that can be contained in a FORTRAN nteger constant.

'rogram Counter

During the assembly process the assembler maintains a FORTRAN Integer cell that always contains the address of the next memory location to be issembled. This cell is called the Program Counter. It is used by the assembler o assign addresses to assembled bytes, but it is also available to the programmer.

The character "\$" is the only valid symbol containing a special character hat the assembler recognizes without error. "\$" is the symbolic name of the rogram Counter. It may be used like any other symbol, but it may not appear in the label field.

When using the "\$", the programmer may think of it as expressing the idea "\$" = "address of myself". For example,

This branch instruction is in location 108_{16} . The instruction directs the nicroprocessor to "branch to myself". The Program Counter in this xample contains the value 108_{16} .

II LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters combined to form assembly language elements. These language elements include symbols instruction mnemonics, constants and expressions which make up the individual program statements that comprise a source program.

CHARACTERS

Alphabetic: Numeric:

Special characters:

A through Z 0 through 9

blank

(left parenthesis) right parenthesis+ add or positive value- subtract or positive value

subtract or negative value

* asterisk
' single quote
, comma
/ slash
\$ dollar sign

< less than sign > greater than sign

SYMBOLS

Symbols are formed from combination of characters. Symbols provide a convenient means of identifying program elements so they can be referenced by other elements.

- 1. Symbols may consist of 1 to 4 alphanumeric characters: A through Z 0 through 9.
- 2. Symbols must begin with an alphabetic character.
- 3. The character \$ is a special symbol which may be used in the argumen field of a statement to represent the current value of the Location Counter.
- 4. The character * is a special symbol which is used as an indirect addres indicator.
- 5. The characters + and are also used as auto-increment/auto-decremen indicators.

The following are examples of valid symbols:

DOP1 RAV3 AA TEMZ

The following are examples of invalid symbols:

1LAR begins with numeric PA N imbedded blank

CONSTANTS

A constant is a self-defining language element. Unlike a symbol, the valu of a constant is its own "face" value and is invariant. Internal numbers ar represented in 2's complement notation. There are two forms in which constants may be written: the Self-Defining Constant and the Genera Constant.

Self-Defining Constant

The self-defining constant is a form of constant which is written directly n an instruction and defines a decimal value. For example:

LODA,R3 BUFF+65

In this example, 65 is a self-defining constant. The maximum value of the nteger constant expressed by a self-defining constant is that which, when expressed in binary, will fit within the basic arithmetic unit of the host computer (typically 1 word).

General Constant

The general constant is also written directly in an instruction, but the nterpretation of its value is dictated by a code character and delimited by quotation marks.

In this example, the code letter H specifies that 3E is a hexadecimal constant equivalent to decimal value 62.

The maximum size of a number generated by a general constant form B, O, D, H) may be no larger than the size of the FORTRAN integer cell of the nost computer. However, the most important concept to understand when using constant forms is that the final value of a resolved expression must fit the constraints of the actual field destined to contain the value. For example:

In this case, the argument, when resolved, must fit into the 13 bits in the actual machine instruction. Even though each of the two hexadecimal constants are larger than can fit into 13 bits, the final value of the expression s containable in 13 bits and therefore the constants are permitted. Similarly, the statement DATA H'3FE' is not allowed, as the DATA statement defines one byte quantities and H'3FE' specifies more than 8 bits. Summarily, the size of the evaluated expressions must be less than or equal to their corresponding data fields. There are 6 types of General Constants:

Code	Type
В	Binary Constant
O	Octal Constant
D	Decimal Constant
Н	Hexadecimal Constant
\mathbf{E}	EBCDIC Character Constant
A	ASCII Character Constant

3: Binary Constant

A binary constant consists of an optionally signed binary number of up to 3 bits enclosed in single quotes and preceded by the letter B, e.g., B'1011011'. Binary information is stored right justified.

D: Octal Constant

An octal constant consists of an optionally signed octal number enclosed

by single quotation marks and preceded by the letter O, e.g., O'352'. The value will be right justified.

D: Decimal Constant

A decimal constant consists of an optionally signed decimal numbe enclosed by single quotation marks and preceded by the letter D, e.g. D'249'. The value will be right justified.

H: Hexadecimal Constant

A hexadecimal constant consists of an optionally signed hexadecima number enclosed in single quotation marks and preceded by the letter H e.g., H'3F'. The value will be right justified.

E: EBCDIC Character Constant

An EBCDIC character consists of a string of EBCDIC characters enclosed by single quotation marks and preceded by the letter E, e.g., E'ARE YOU THERE?'. Each character will be encoded in 8-bit EBCDIC and stored in successive bytes. The maximum number of characters which may be specified in one character string constant is 16.

A: ASCII Character Constant

An ASCII character constant consists of a string of ASCII character enclosed by quotation marks and preceded by the letter A. For example A'HELLO THERE'. Each character will be encoded in 7-bit ASCII and stored in successive bytes. The high order bit is always set to zero in each allocated byte. Up to 16 characters may be specified in one statement

Note: See Appendix C for permissible characters and their equivalent ASCII and EBCDIC codes. To specify a single quotation mark as a character constant it must appear twice in the character string, e.g., A'TYPE' 'HELP' 'NOW will appear in storage as TYPE'HELP'NOW.

MULTIPLE CONSTANT SPECIFICATIONS

General constant forms, except A and E, allow multiple specification within the constant expression. For example: D'52, 21, 208, 27'. A commisseparates each byte specification and successive specifications determine successive bytes of storage. Only 16 bytes of information may be specified in any one general constant form and each byte may be optionally signed For example:

H'03,-F2,+11,-8,33,0' O'271,133'.

EXPRESSIONS

An expression is an assembly language element that represents a value It consists of a single term or a combination of terms separated by arithmetic operators. A term may be a valid symbolic reference, a self-defining constant or a general constant.

It is important to understand that although individual terms in a expression may exceed the number size restriction of the 2650 (one or two bytes), they may not cause the number size of the host computer's integer FORTRAI constant to be exceeded.

Examples of valid expressions:

LOOP PAL-\$
LOOP+5 \$-PAL+3
SAM+3-LOOP BIT-3+H'3A'

Note: The special symbol '\$' represents the current value of the location counter.

SPECIAL OPERATORS

There are two special operators that are recognized by the assembler. They are:

< less than sign

APAL

> greater than sign

The assembler interprets these operators in a special way:

- < perform a modulo 256 divide (use high order byte)
- > perform a divide by 256 (use low order byte)

These operators, when used, must appear as the first character in the argument field. If they are imbedded in an expression, the results are impredictable.

These special operators are intended to be used to access a two byte address in one byte parts using a minimum of storage. For example, if it is lesired to get the high order bits of an address (ADDB) into register 2 and the ow order bits into register 1 it could be done as follows:

LODR,R2 APAL LODR,R1 APAL+1

• • •

• • •

ACON ADDB

or, by utilizing the special operators, it could be done as follows:

LODI,R2 <ADDB LODI,R1 >ADDB

The first method uses 6 bytes to accomplish what the second method can do n 4 bytes.

The special operators care most often used to facilitate the passing of an iddress in registers.

III SYNTAX

Assembly language elements may be combined to symbolically express both 2650 instructions and assembler directives. There are specific rules for writing these instructions. This set of rules is known as the Syntax of the symbolic assembler language. The following description assumes a logical input of an 80-column data processing card, but since the host assembler is written in Fortran, the input media may be magnetic tape, magnetic disk, paper tape, etc. Only the format statement for input need be changed to accommodate the various input media.

FIELDS

A statement prepared for processing by the assembler is logically divided into four fields: the Name Field, the Operation Field, the Argument Field and the Comment Field. Each field is separated by at least one blank character. No continuation cards are allowed, and only logical columns 1 through 72 are scanned by the assembler. Logical columns 73 through 80 inclusive may be used for any desired purpose.

Name Field

The name (or label) field optionally contains a symbolic name which the assembler assigns to the instruction specified in the remaining part of the line. If a name is specified, it must begin in logical column 1. The assembler assumes that there is no name if logical column 1 is blank. The name field, if present, must contain only a valid symbol.

Operation Field

The operation field contains a mnemonic code which represents a 2650 processor operation or an assembly directive. The operation field must be present in every non-comment line. See Appendix A for a list of the valid mnemonic codes. Additionally, depending on the instruction type, the operation field may also specify a general purpose register or a condition code.

Argument Field

The argument field contains one or more symbols, constants or expressions separated by commas. The argument field specifies storage locations constants, register specifications and any other information necessary to completely specify a machine operation or an assembler directive. Embedded blanks are not permitted as they are considered field terminators.

Comment Field

The comment field contains any valid characters in any combination. The comment field is not processed by the assembler, but is merely reproduced on the listing next to the accompanying instruction. It is usually used to explain the purpose or intention of a particular instruction of group of instructions.

Comment Card

An entire 72 column line may be utilized to print comments by coding an asterisk (*) in column 1. This entire card is merely reproduced on the assembly listing without processing by the assembler.

YMBOLS

Symbols are used in the name field of a symbolic machine instruction o identify that particular instruction and to represent its address. Symbols hay be used for other purposes, such as the symbolic representation of ome memory address, the symbolic representation of a constant, the ymbolic representation of a register, etc.

No matter how the symbol is used, it must be defined. A symbol is defined when the assembler knows what value the symbol represents. There is only me way to define a symbol. The symbol must at some time appear either a the name field of an instruction or of an assembler directive. The symbol will be assigned the current value of the Location Counter when it appears a the name field of a machine instruction, or it may be assigned some other alue through use of the EQU assembler directive. A symbol may not appear a the name field more than once in a program, because this would cause the ssembler to try to redefine an already defined label. The assembler will not do this and will flag the second appearance of a particular label as an rior.

YMBOLIC REFERENCES

Symbols may be used to refer to storage designations, register assignments, onstants, etc. For example:

Address	Name	Operation	Argument
101	MAZE	DATA	H'F5'
102		LODA.3	MAZE

The symbolic label "MAZE" represents the address 101. It is used in the nachine instruction at address 102 to tell the assembler to build an instruction LODA,3 101. The symbolic label, in this case, is a way for the programmer to specify an address without knowing exactly what the address hould be when he writes the program. In this example, assume there was a need to modify this sequence of code: a data statement was inserted between he original two statements.

Address	Name	Operation	Argument
99	MAZE	DATA	$\mathrm{H'F5''}$
9A,9B		DATA	H'FE,3A'
9C		LODA,3	MAZE

Even though there was a program change which caused the data at MAZE o be located at address 99, the load instruction referencing the data didn't have to be rewritten because the assembler could provide the proper physical ddress for the symbolic address MAZE. The instruction at address 9C will be assembled as LODA,3 99.

YMBOLIC ADDRESSING

When writing instructions in the symbolic assembler language for the 1650, the addresses may be expressed through symbolic equivalents. The ssembler will translate the symbolic address to its numeric equivalent turing the assembly process.

It is good programming practice to make all address references symbolic,

as this greatly eases the programmer's job in producing a working program. To make the register specification symbolic, one could equate a symbol to the register number:

RG3 EQU 3

• • •
• • •
LODA,RG3 MAZE

Forward References

A previously defined symbol is one which has appeared in the name field before it is referenced (as above). In contrast, a forward reference is a symbolic reference to a line of code when the symbol has not yet appeared in the name field. For example:

	ADDA,2	COEF
	• • •	
	• • •	
	• • •	
COEF	DATA	D'123'

Forward references may be used anywhere in a program with the following exceptions:

- 1. The register/condition field.
- 2. The symbolic argument fields of EQU, RES, ORG and DATA statements.

Relative Addressing

The programmer may reference a memory cell either directly or via relative addressing. To refer directly to a memory cell of symbolic address MAIN, one has merely to use the name MAIN in the argument field of the referencing instruction. For example:

BIRA, R2 MAIN

It is also possible to express the address of a memory cell symbolically if some nearby cell is symbolically assigned. For example, to load the memory cell which is 5 cells higher in memory than the cell named MAIN one need only to refer to it as MAIN+5:

LODA,2 MAIN+5

This later method is called relative addressing, and the relative count may be given as + or - the maximum value which can be held in one integer variable of the host computer's FORTRAN compiler.

The Location Counter and Symbol "\$"

There is one symbolic name, "\$", which is automatically defined by the assembler. This single character name is always symbolically equated to the assembler's Location Counter. Since the Location Counter is used by the assembler during the assembly process and is usually equated to the address

of the next byte to be assembled, it represents the address of the instruction or data currently being specified. For example: BCTR,3 \$+5. The branch address will be interpreted by the assembler to be the address of the first byte of the branch instruction plus 5 bytes.

Hardware Relative Addressing

When using instructions which use "hardware relative addressing" (as distinguished from relative addressing discussed earlier in this section), it is important to realize the assembler will not only evaluate the expression which is given as an operand address, but will convert it to a hardware relative address (see the Hardware Specifications manual for a description of the addressing modes). For example:

Address	Name	Operation	Argument
100	SAM	LODA,R2	PAL
103		SUBI,R2	- 3
105		BIRR,R3	SAM
107	next instruct	tion	

In this code, the BIRR instruction specifies hardware relative addressing. Even though the equivalent value of the symbolic address SAM is 100, the relative addressing instruction requires a displacement relative to the address of the next sequential instruction. Therefore, the operand SAM will be evaluated as = -(current location counter+length of BIRR instruction-SAM) = -(105+2-100) = -(+7) = -7. Remember, where the hardware instruction calls for "hardware relative addressing", the expression in the operand field will be evaluated as the displacement from the address of the next sequential instruction. The value of this displacement may range from -64 to +63.

Indirect Addressing

The symbol "*" is used to specify indirect addressing. For example:

	BCTA,3	*SAM
	• • •	
	. • • •	
	• • •	
SAM	ACON	SUBR

In this code, the BCTA instruction specifies indirect addressing. The assembler will set the indirect bit (byte #1, bit #7) for this instruction.

Auto-Increment and Auto-Decrement

The symbol "+" and "-" are used to specify auto-increment and auto-decrement, respectively. For example:

In this code, which specifies auto-increment, the assembler sets bits #6 and #5 of byte #1 to "01" for this instruction. This option is specified in the instruction set tables as (X).

IV PROCESSOR INSTRUCTIONS

2650 machine instructions may be written in symbolic code. All features provided by the assembler such as symbolic addressing and constant generation may be used. The fields described below are free form and are separated by at least one blank character. The name, however, if present, must begin in logical column 1.

LABEL OPERATION OPERAND COMMENTS
name opcode operand(s)

Where:

LABEL FIELD contains an optional label which the assembler will

assign as the symbolic address of the first byte of the

instruction.

OPERATION contains any of the 2650 processor mnemonic operation FIELD codes as detailed in Appendix A or any Assembler

codes as detailed in Appendix A, or any Assembler Directive. This field may include an expression which specifies a register or value as required by the instruction. All symbols used in this field must have been previously

defined, i.e., no symbolic forward references are allowed.

OPERAND contains one or more operand elements such as indirect address indicator, operand expression, index register

address indicator, operand expression, index register specification, auto-increment/auto-decrement indicator, constant specification, etc., depending on the require-

ments of the particular instruction.

COMMENTS any characters following the argument field will be FIELD reproduced in the assembly listing without processing

reproduced in the assembly listing without processing. The Comments Field must be separated from the argu-

ment field by at least one blank.

Note: Refer to Appendix A for a summary of the mnemonic op-codes and see

2650 Hardware Specification manual.

V DIRECTIVES TO THE 2650 ASSEMBLER

There are eleven directives which the assembler will recognize. These assembler directives, although written much like processor instructions, are simply commands to the assembler instead of to the processor. They direct the assembler to perform specific tasks during the assembly process, but have no meaning to the 2650 processor. These assembler directives are:

ORG
EQU
ACON
DATA
RES
END
EJE
PRT
SPC
TITL
PCH

ORG SET LOCATION COUNTER

The ORG directive sets the assembly Location Counter to the location specified. The assembler assumes an ORG 0 at the beginning of the program if no ORG statement is given.

LABEL	OPERATION	OPERAND
{name}	ORG	expression

Where:

name

optionally provides a symbol whose value will be

equated to the specified location.

expression

when evaluated, results in a positive integer value. This value will replace the contents of the location counter, and bytes, subsequently assembled will be assigned sequential memory addresses beginning with this value. Any symbols which appear in the argument must have

been previously defined.

Examples:

LARR STAR ORG ORG YORD H'100'

EQU SPECIFY A SYMBOL EQUIVALENCE

The EQU directive tells the assembler to equate the symbol in the name field with the evaluatable expression in the argument field.

LABEL	OPERATION	OPERAND
name	EQU	expression

Where:

name

is the symbol which is to be assigned some value by the

execution of this directive.

expression

may be resolved to zero or some integer value which is containable in the host computer's FORTRAN integer cell. If a symbol is used in the argument, it must have been previously defined.

Examples:

PAL	\mathbf{EQU}	$\mathrm{H'}10\mathrm{F'}$
LOP2	$\mathbf{E}\mathbf{Q}\mathbf{U}$	PAL
RAMP	$\mathbf{E}\mathbf{Q}\mathbf{U}$	SLOP-3+PAL

RAMP $\mathbf{E}\mathbf{Q}\mathbf{U}$

REG1 EQU

ACON DEFINE ADDRESS CONSTANT

The ACON directive tells the assembler to allocate two successive bytes of storage. The evaluated argument will be stored in the two bytes, the low order 8 bits in the second byte and the high order bits in the first byte. This directive is mainly intended to provide a double byte containing an address for use as the indirect address for any instruction executing in the indirect addressing mode.

LABEL	OPERATION	OPERAND
$\{$ name $\}$	ACON	expression

Where:

name

is an optional label. If specified, the name becomes the

symbolic address of the first byte allocated.

expression

is some expression which must resolve to a positive value or zero. If positive, the value should be no larger than that which can be contained in two bytes.

Example:

ASUB

ACON

SUBR

DATA DEFINES MEMORY DATA

The DATA directive tells the assembler to allocate the exact number of bytes required to hold the data specified in the argument field of this irective. Up to 16 bytes can be specified with one DATA directive, but he argument field may not extend past logical column 72.

LABEL	OPERATION	OPERAND
$\{name\}$	DATA	expression

Vhere:

ame

is an optional label. If used, the name becomes the symbolic address of the first byte allocated by the directive.

xpression

is a general constant, a self-defining constant or a symbolic address. If a symbol is specified, it must have been previously defined. A multiple constant specification in the argument field will cause a corresponding number of bytes to be allocated. Any other expression that can be resolved to a single value will result in one byte being allocated.

'xamples:

AL

DATA LOOP DATA H'03,22,FC,A1' DATA +127 DATA D'28'

Note: If the expression evaluates to a value between 0 and 255 the result is an eight bit absolute binary number. DATA +127 results in H'7F'. Also, if the expression evaluates to a value which is less than 0 the result is a 2's complement, binary number. DATA H'-5' results in H'FB'.

RES RESERVE MEMORY STORAGE

The RES directive tells the assembler to reserve contiguous bytes of storage. The number of bytes so reserved is determined by the argument. The reserved bytes are not set to a known value, but rather the effect of this directive is to increment the location counter.

LABEL	OPERATION	OPERAND
{name}	RES	expression

Where:

name

is an optional label. If used, the name becomes the

symbolic address of the first byte allocated.

expression

is some evaluatable expression which must resolve to some positive integer or zero. The value of this expression may not exceed the maximum positive value containable in a FORTRAN cell of the host computer. If a symbol is specified, it must have been previously defined.

Example:

LOR RES 23 MASK RES LOR+5 RES H'1A'

END END OF ASSEMBLY

The END directive informs the assembler that the last statement to be issembled has been input and the assembler may proceed with the assembly. The END directive causes the assembler to communicate the program start address to the object module.

LABEL	OPERATION	OPERAND
	END	expression

Where:

expression

may be resolved to the starting address of the program. If this parameter is not specified, the start address is set to zero.

EJE EJECT THE LISTING PAGE

The EJE directive tells the assembler to advance the listing to the top of the next page regardless of the line position on the current listing page.

The directive is used primarily to organize listing for documentation purposes and does not appear in the listing.

LABEL	OPERATION	OPERAND
	EJE	

PRT PRINTER CONTROL

The PRT directive tells the assembler to resume or discontinue printing of the assembled program.

This directive is used primarily to shorten assembly time by listing only that portion of the program which the user needs to see. Only the PRT OFF will appear in the listing.

LABEL	OPERATION	OPERAND
	PRT	on off

Note: PRT is set ON at the beginning of an assembly of the assembler.

SPC SPACE CONTROL

The SPC directive tells the assembler to skip or space a number of lines.

This directive is used primarily to organize listings for documentation purposes and does not appear in the listing.

LABEL	OPERATION	OPERAND
	SPC	expression

Where:

expression

is some evaluatable expression which must resolve to some positive integer. If the value of this expression is equal to, or greater than, the number of lines remaining on the page, the effect is the same as the EJE directive.

Example:

SPC

5

FITL TITLE

The TITL directive tells the assembler to skip to the top of the next page and insert a given title into the main header.

This directive is used primarily for documentation purposes and does not appear in the listing.

LABEL	OPERATION	OPERAND
	TITL	expression

Vhere:

xpression

is the title information not to exceed forty character

positions.

?xample:

TTL

MAIN PROGRAM SUBROUTINE

PCH PUNCH CONTROL

The PCH directive tells the assembler to selectively resume or discontinue the output of the load module.

This directive is used primarily to shorten assembly time when a load module is not desired or when only a portion of the load module is desired.

LABEL	OPERATION	OPERAND
	PCH	$\begin{cases} on \\ off \end{cases}$

Note: PCH is set ON at the beginning of an assembly by the assembler. When PCH OFF is specified, any prior load module data is output.

VI THE ASSEMBLY PROCESS

The 2650 assembler translates symbolic source code into machine language structions. The assembler examines every source statement for syntactic alidity and produces the equivalent machine code for the 2650 processor.

This is a two pass assembler, which means, the entire source code is canned twice by the assembler. On the first pass, all defined labels and their quivalent values are stored in a symbol table, the first byte of every instruction is fully determined, and some errors may be detected. During pass 2, ymbolic address references are replaced by their values, errors may be etected, and a listing and load/object module is generated.

vmbol Table

The assembler builds and maintains a symbol table during the assembly rocess. The symbol table contains an entry for each symbol in the assembled rogram. The entry consists of the symbol itself and its value. Up to 400 ymbols may be used in each program assembled. If a symbol, which ppears in the argument field of an instruction has never been defined never appeared in the NAME field), the assembler will generate an error ode on the listing because it is unable to resolve an undefined symbol and rill place zero as the unresolved value in the object module.

ocation Counter

The assembler maintains a memory cell which it uses as a Location counter. This Location Counter keeps track of the address of the next yte of storage to be allocated by the assembler. During coding, the rogrammer may think of the Location Counter as containing the address f the first byte of the instruction being written. In this assembler, the ocation Counter is also used to provide load information. This means nat the addresses displayed on an assembly listing are the actual addresses thich are to contain the corresponding information upon loading of the bject program.

rror Detection

During an assembly, the source program is checked for syntax errors. I errors are found, appropriate notification is given and the assembly roceeds. Although an assembled program containing errors generally will ot run properly, it is considered good practice to complete the assembly o locate all errors at one time, rather than terminate it when an error encountered.

rror Codes

As shown in the listing illustration, there are three columns on the sting in which an error indication may appear. An error displayed, in the rst column usually indicates that the error was in the Name Field, the econd column corresponds to the Operation Field, and the third corresponds to the Argument Field. Sometimes because an error causes the assembler view the next field incorrectly, a valid field may be flagged as an error. his is a consequence of the free format source language. A good rule is to x errors in a particular line of code as they are discovered. In this way, rroneously flagged program errors may then be passed as valid.

The following alphabetic characters are printed in the error indicator columns and imply the corresponding message.

- L Label error. The label contains too many characters, contains invalid characters, has been previously defined, or is an invalid symbol.
- O Op-code error. The op-code mnemonic has not been recognized as a valid mnemonic.
- R Register field error. The register field expression could not be evaluated, or when evaluated, was less than 0 or greater than 3, or the register field was not found.
- S Syntax error. The instruction has violated some syntax rule.
- U Undefined symbol. There is a symbol in the argument field which has not been previously defined.
- A Argument error. The argument has been coded in such a way that it cannot be resolved to a unique value.
- P Paging error. A memory access instruction has attempted to address across a page boundary.
- W Warning. The assembler has detected a syntactically correct but unusual construction. The error will not be counted and will not inhibit the production of the object module.

Using the Assembler

The program is prepared by punching it into cards or otherwise transferring the program statements into a logical card image file. An ORG statement usually occurs early in the program. If no ORG appears, the assembler assumes an ORG 0 to occur before the first assembled statement. An END statement must occur as the last statement. A program written in the 2650 Symbolic Assembler Language should be preceded and possibly followed by control cards for the particular computer system which is being used. Illustration VI-1 shows the control cards for an IBM/370 DOS system. Although the control cards may vary from system to system, the format of the actual 2650 source program will be the same in the system.

The object module produced by the Assembler during pass 2 is directed to the FORTRAN standard device #2, in this instance the card punch. The source program is read by the assembler at standard device #1, the card reader. In some systems the device assignments may be altered if desired, through assign cards. In other systems, however, the assembler must be recompiled with the device numbers desired being set in the main program module.

ILLUSTRATION VI-1

```
JOB SPTP MC01 OLILA MICROPROCESSOR X2464

"OPERATOR - THIS PROS PUNCHES A FEW CARDS: WOTRING X2359

"ASSGN SYS004.5YS001

"EXTENT SYS004...,7505.160

"EXEC CLRDK
"UCL B=(K=0.D=512),X'00'.ON.E=(3330)

"ASSGN SYS006.SYS007

"ASSGN SYS006.SYS007

"ASSGN SYS007.YPXGO WORK'.69/001

"EXEC PXPIPASM'...,7505.160

Z650 SOURCE PROGRAM
```

Object Module

The format of the object module is: The first card or card image is always all 9's.

bb99999999999999

The second and all subsequent data cards are in the following format. Logical columns (1-5) contain the load address in decimal. Each three columns (6-71) contain the data to be loaded in decimal. Each three columns represent a pyte of data; columns (6-8), (9-11), (12-14), etc. Beginning at the address ndicated in columns (1-5) each sequential data byte is to be loaded into sequentially ascending addresses in memory. If a '999' appears in a particular lata byte position, that byte of information is to be ignored by the loader and the contents of the corresponding location is not modified.

Because there is address and data on every card image, each card image is ndependent. Therefore, the order of the data cards is unimportant and patch cards may be prepared manually by preparing a data card in the object nodule format.

The last two card images each serve a special purpose. The next to last and contains a series of '-1' punches. This card is used to signal the end of oad information and has no other function.

The last card, which follows the '-1' card, contains either the start iddress (specified in assembler END statement) or zero in columns (1-5), he remainder of the card contains '-1' punches which have no meaning.

ASSEMBLY LISTING

Illustration VI-2 is a sample of a program listing produced by the 2650 Assembler. The following explanations are keyed to the listing.

- Page heading which displays the current version and level of the 2650 Assembler.
- 2. Line number every assembled line is assigned a line number for the programmer's convenience.
- 3. Address column The numbers in this column are equal to the value of the assembly Location Counter and indicate the address at which the first byte (B1) is to be loaded.
- 4. Label column If there is a symbol in the Label Field of a line of code, the value of the label will appear in this column. For example, in line number 17 the value of the label SORT is H'0007'.
- 5. Data field This field describes the data bytes which are to be stored sequentially starting at the address in the Address Column.
- 6. Error columns These columns may contain the error codes as detailed elsewhere in this chapter.
- 7. Source code This area of the listing reproduces the source code as it was read by the assembler.
- 8. Page number Every page of the listing is numbered sequentially.
- 9. Cumulative errors This field indicates the total of errors detected by the assembler during the assembly process. Warning messages (W) are not included in this total.

ILLUSTRATION VI-2

SORT PROGRAM FOR PIP NUMBER OF ITERATIONS TO PERFORM	LOAD BUFFER LENGTH INTO REG 3 SET FOR ARITHMATIC CCMPARISONS (NOT LOGICAL) DECREMENT LOOP COUNTER STORE LOOP COUNTER IF NOT ZERO, CALL SUBROUTINE IF NOT ZERO, LOOP BACK AGAIN	ZERO REG 2 COUNTS COMPARISONS ZERO REG 2 COUNTS COMPARISONS CNT IF ECUAL, ITERATION COMPLETE BUF,R2 LCAD FIRST NUMBER OF CURRENT PAIR BUF,R2 + COMPARE WITH SECOND NUMBER LOOP IF FIRST LT OR = SECOND, LCOP BACK BUF,R2 LOAD SMALLER NUMBER TO REG 1 BUF,R2 LOAD SMALLER NUMBER IN FIRST LOCATION MOVE LARGER NUMBER TO REG 0 BUF,R2 STORE LARGER NUMBER IN SECOND LOCATION LOOP LOOP BACK	LENGTH OF BUFFER TO BE SORTED BUFFER TO BE SORTED
C BUBBLE 0 3 3 1 2 0 0	AM LEN 2 2 1 1 CNT SUB1 SORT		
# ARITHMETIC R0 EQU R1 EQU R3 EQU UN EQU GT EQU L1 EQU EQ EQU EQ EQU CNT RES	* * MAIN PROGRAM STRT LODA,R3 CPSL SORT SUB1,R3 STRA,R3 BSNA,R3 HALT	* SUBROUTINE SUB1 LODA,R2 LOOP CCMA,R2 LODA,R0 CCMA,R0 BCFR,GT STRZ R1 LCDA,R0 STRA,R0 STRA,R0 STRA,R0 STRA,R0	* * CRG LEN CATA BUF RES END
0000 0001 0003 00003 00001 0000 0000 00	0002 0F 00 C8 75 02 0007 47 01 CF 00 01 7F 00 12 58 76	0012 0E 00 00 0015 EE 00 01 14 00 01 0E 00 C9 99 74 0E 60 C8 0E 60 C8 01 05	00008 00009 00009
000000000000000000000000000000000000000	0002 0005 0005 0005 0007 0001	23 25 0012 25 0013 27 0019 27 0019 28 0010 29 0021 31 0022 33 0028 33 0028 34 0029	8000 8000 8000 8000

APPENDIX A

SUMMARY OF 2650 INSTRUCTION MNEMONICS

In these tables parentheses are used to indicate options. In no case are they coded in any instruction. The following abbreviations are used:

- r register expression, must evaluate to $0 \le r \le 3$.
- v value expression
- * indirect indicator
- a address expression
- x index register expression
- X index register expression with optional auto-increment or autodecrement.

NOTE:

- the use of the indirect indicator is always optional.
- when an index register expression is specified, it can be followed by ', +' or ', -' which indicates use of auto-increment or auto-decrement of the index register. Example:

LODA, 0 DPR, R3,+

- BXA, BSXA are exceptions and do not permit auto-increment or auto-decrement—even though an address expression is specified in a hardware relative addressing instruction, the assembler develops it into a value of (-64 \leq V \leq +63).
- a memory reference instruction which requires indexing may use only register 0 as the destination of the operation.
- if an index register expression is used with either the BXA or BSXA instructions it must specify index register #3 (either register bank) for indexing. Any other value in the index field will produce an error during assembly. However, it is not necessary to use an index register expression with these instructions; a blank in this field will default to register 3.

LOAD/ST	ORE INSTR	UCTIONS	Length (bytes)
LODZ	r	Load Register Zero	. 1
LODI,r	v	Load Immediate	2
LODR,r	(*)a	Load Relative	2
LODA,r	(*)a(X)	Load Absolute	3
STRZ	r	Store Register Zero	1
STRR,r	(*)a	Store Relative	2
STRA,r	(*)a(,X)	Store Absolute	3
ARITHME	TIC INSTR	UCTIONS	
ADDZ	r	Add to Register Zero	1
ADDI,r	v	Add Immediate	2
ADDR,r	(*)a	Add Relative	2
ADDA,r	(*)a(X)	Add Absolute	3
SUBZ	r	Subtract from Register Zero	1
SUBI,r	v	Subtract Immediate	2
SUBR,r	(*)a	Subtract Relative	2
SUBA,r	(*)a(,X)	Subtract Absolute	3
LOGICAL	INSTRUCT	IONS	
ANDZ	r	And to Register Zero	1
ANDI,r	v	And Immediate	2
ANDR,r	(*)a	And Relative	2
ANDA,r	(*)a(X)	And Absolute	3
IORZ	r	Inclusive or to Register Zero	1
IORI,r	v	Inclusive or Immediate	2
IORR,r	(*)a	Inclusive or Relative	2
IORA,r	(*)a(X)	Inclusive or Absolute	3
EORZ	r	Exclusive or to Register Zero	1
EORI,r	v	Exclusive or Immediate	2
EORR,r	(*)a	Exclusive or Relative	2
EORA,r	(*)a(,X)	Exclusive or Absolute	3
COMPARI	SON INSTR	UCTIONS	
COMZ	r	Compare to Register Zero	1
COMI,r	v	Compare Immediate	2
COMR,r	(*)a	Compare Relative	2
COMA,r	(*)a(X)	Compare Absolute	3

ROTATE	INSTRUCT	TIONS	Length (bytes)
RRR,r		Rotate Register Right	1
RRL,r		Rotate Register Left	1
,			•
BRANCH	INSTRUCT	TIONS	
BCTR,v	(*)a	Branch on Condition True Relative	2
BCFR,v	(*)a	Branch on Condition False Relative	2
BCTA,v	(*)a	Branch on Condition True Absolute	3
BCFA,v	(*)a	Branch on Condition False Absolute	3
BRNR,r	(*)a	Branch on Register Non-Zero Relative	2
BRNA,r	(*)a	Branch on Register Non-Zero Absolute	3
BIRR,r	(*)a	Branch on Incrementing Register Relative	2
BIRA,r	(*)a	Branch on Incrementing Register Absolute	3
BDRR,r	(*)a	Branch on Decrementing Register Relative	2
BDRA,r	(*)a	Branch on Decrementing Register Absolute	3
BXA	(*)a(,x)	Branch Indexed Absolute, Unconditional	3
ZBRR	(*)a	Zero Branch Relative, Unconditional	2
		NCH/RETURN INSTRUCTIONS	
BSTR,v	(*)a	Branch to Subroutine on Condition	2
		True, Relative	
BSFR,v	(*)a	Branch to Subroutine on Condition	2
DOM A	(False, Relative	
BSTA,v	(*)a	Branch to Subroutine on Condition	3
DOE A	(.)	True, Absolute	
BSFA,v	(*)a	Branch to Subroutine on Condition	3
DOMD	4.3	False, Absolute	_
BSNR,r	(*)a	Branch to Subroutine on Non-Zero	2
DOM A	(.)	Register, Relative	
BSNA,r	(*)a	Branch to Subroutine on Non-Zero	3
DOM: A		Register, Absolute	
BSXA	(*)a(,x)	Branch to Subroutine, Indexed, Uncondition	
RETC,v		Return From Subroutine, Conditional	1
RETE,v		Return From Subroutine and Enable	1
anan		Interrupt, Conditional	_
ZBSR	(*),a	Zero Branch to Subroutine	2
		Relative, Unconditional	
PPOGPAI	MICTATHE	INSTRUCTIONS	
LPSU	WISTATUS		1
LPSL		Load Program Status, Upper	1
SPSU		Load Program Status, Lower	1
SPSL		Store Program Status, Upper Store Program Status, Lower	1
CPSU	v		$\overset{1}{2}$
CPSL	v V	Clear Program Status, Upper, Selective	$\frac{2}{2}$
PPSU	v V	Clear Program Status, Lower, Selective	$\frac{2}{2}$
PPSL	v	Preset Program Status, Upper, Selective	$\frac{2}{2}$
TPSU	v	Preset Program Status, Lower, Selective	$\frac{2}{2}$
TPSL	v	Test Program Status, Upper, Selective Test Program Status Lower, Selective	2
TIBL	V	rest riogram Status Lower, Selective	2
INPUT/OU	JTPUT INS	TRUCTIONS	
WRTD,r		Write Data	1
REDD,r		Read Data	1
WRTC,r		Write Control	1
REDC,r		Read Control	1
WRTE,r	v	Write Extended	2
REDE,r	v	Read Extended	2
,-			_
MISCELLA	ANEOUS IN	ISTRUCTIONS	
HALT		Halt, Enter Wait State	1
DAR,r		Decimal Adjust Register	1
TMI,r	v	Test Under Mask Immediate	2
NOP		No Operation	1
		•	

APPENDIX B

NOTES ABOUT THE 2650 PROCESSOR

- 1. AUTO-INCREMENT, DECREMENT of index register. This feature is optional on any instruction which uses indexing with the exception of BXA and BSXA. The increment or decrement occurs before the index register is added to the displacement in the instruction.
- 2. The contents of registers when used for indexing are considered to be unsigned absolute numbers. Consequently, index registers can contain values from 0 to 255. They "wrap-around" so that the number following 255 is 0.
- 3. Only absolute addressing instructions can be indexed.
- 4. The Branch on Incrementing Register or Decrementing Register instructions perform the increment or decrement before testing for zero. The only time the branch address is not taken, is when the register contains zero.
- 5. All hardware relative addressing is implemented as modulo 8K and therefore relative addressing across the top of a page boundary will result in a physical address near the bottom of the page being accessed. For example:

1FFC₁₆ LODR,R2 \$+16

This instruction results, during execution, in accessing the byte at location 000C in the same page as the instruction. Similarly, negative relative addresses from near the bottom of a page may result in an effective address near the top of the page.

- 6. Page boundaries cannot be indexed across.
- 7. Data can always be accessed across a page boundary through use of relative indirect or absolute indirect addressing modes.
- 8. The only way to transfer control to a program in some other page is to branch absolute or branch indirectly to the new page. Program execution cannot flow across a page boundary.
- 9. Unconditional branch or branch to subroutine instructions are coded by specifying a value of 3 in the register/value field of BSTA, BSTR, BCTA or BCTR. Example:

UN EQU 3

•••

•••

BSTA,UN PAL

BCTR,3 LOOP

Unconditional branches on conditions false (BCFA, BCFR) are not allowed.

APPENDIX C

ASC II AND EBCDIC CODES

This table presents the only characters that the assembler will recognize n an A or E type constant and their equivalent codes in hexadecimal.

VALID	EBCDIC	ASC II	VALID	EBCDIC	ASC II
CHARACTERS	CODE	CODE	CHARACTERS	CODE	CODE
0	$\mathbf{F0}$	30	V	E5	56
1	F1	31	\mathbf{W}	$\mathbf{E6}$	57
2	F2	32	X	$\mathbf{E7}$	58
3	F3	33	Y	E8	59
4	F4	34	${f Z}$	E9	5A
5	F5	35	blank	40	20
6	F6	36	. •	4B	2E
7	F7	37	(4D	28
8	F8	38	+	4E	2B
9	F9	39	İ	4F	7C
\mathbf{A}	C1	41	&	50	26
В	C2	42	!	5A	21
C	C3	43	\$	5B	24
D	C4	44	*	5C	2A
\mathbf{E}	C5	45)	5D	29
\mathbf{F}	C6	46	• • • • • • • • • • • • • • • • • • •	5E	3B
G	C7	47	$\neg \neg$ or \sim	5F	$7\mathrm{E}^*$
Н	C8	48	_	60	2D
I	C9	49	/	61	2F
J	D1	4A	,	6B	2C
K	D2	4B	%	6C	25
L	D3	4C	$-$ or \leftarrow	6D	5F*
M	D4	4D	>	6E	$3\mathbf{E}$
N	D5	$4\mathrm{E}$?	6F	3F
O	D6	$4\mathrm{F}$:	7A	3A
P	D7	50	#	7B	23
Q	D8	51	@	7C	40
Ř	D9	52		7D	27
\mathbf{S}	E2	53	=	7E	3D
\mathbf{T}	E3	54	**	7 F	22
U	$\mathbf{E4}$	55	<	4C	3C

^{*}may have different graphic symbols on different computer systems

APPENDIX D

COMPLETE ASCII CHARACTER SET

	(MSE	3) b ₇		0	0	1	1	1	1
	\rangle	b ₆		1	1	0	0	1	1
b ₄	b ₃	b ₂	b ₅	0	1	0	1	0	1
0	0	0	0	SP	0	@	Р	`	р
0	0	0	1	!	1	А	Q	a	q
0	0	1	0	"	2	В	R	b	r
0	0	1	1	#	3	С	S	С	S
0	1	0	0	\$	4	D	Т	d	t
0	1	0	1	%	5	Е	U	е	u
0	1	1	0	&	6	F	٧	f	v
0	1	1	1	,	7	G	W	g	w
1	0	0	0	(8	Н	х	h	х
1	0	0	1)	9	l	Y	i	У
1	0	1	0	*	:	J	Z	j	z
1	0	1	1	+	;	К	[k	{
1	1	0	0	,	<	L	\	ı	
1	1	0	1	-	=	M]	m	}
1	1	1	0	•	>	N	↑	n	~
1	1	1	1	/	?	0	←	0	DEL

APPENDIX E

POWERS OF TWO TABLE

```
2^n
                             2<sup>-n</sup>
                       n
                 1
                       0
                             1.0
                             0.5
                 4
                             0.25
                       2
                 8
                       3
                             0.125
                             0.062 5
                16
                       4
                             0.031 25
                32
                       5
                             0.015 625
                64
                       6
                             0.007 812 5
               128
                       7
                             0.003 906 25
               256
                       8
               512
                       9
                             0.001 953 125
                             0,000 976 562 5
            1 024
                      10
                             0.000 488 281 25
             2 048
                      11
             4 096
                             0.000 244 140 625
                      12
                             0.000 122 070 312 5
            8 192
                      13
                             0.000 061 035 156 25
           16 384
                      14
                             0.000 030 517 578 125
           32 768
                      15
                             0.000 015 258 789 062 5
           65 536
                      16
                             0.000 007 629 394 531 25
          131 072
                      17
                             0.000 003 814 697 265 625
          262 144
                      18
                             0.000 001 907 348 632 812 5
          524 288
                      19
                             0.000 000 953 674 316 406 25
        1 048 576
                      20
        2 097 152
                             0.000 000 476 837 158 203 125
                      21
                             0.000 000 238 418 579 101 562 5
        4 194 304
                      22
                             0.000 000 119 209 289 550 781 25
        8 388 608
                      23
                             0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
       16 777 216
                      24
       33 554 432
                      25
                             0.000 000 014 901 161 193 847 656 25
       67 108 864
                      26
      134 217 728
                             0.000 000 007 450 580 596 923 828 125
                      27
                             0.000 000 003 725 290 298 461 914 062 5
      268 435 456
                      28
                             0.000 000 001 862 645 149 230 957 031 45
      536 870 912
                      29
                             0.000 000 000 931 322 574 615 478 515 625
   1 073 741 824
                      30
                              0.000 000 000 465 661 287 307 739 257 812 5
    2 147 483 648
                      31
                              0.000 000 000 232 830 643 653 869 628 906 25
    4 294 967 296
                       32
   8 589 934 592
                              0.000 000 000 116 415 321 826 934 814 453 125
                       33
                              0.000 000 000 058 207 660 913 467 407 226 562 5
   17 179 869 184
                       34
                              0.000 000 000 029 103 830 456 733 703 613 281 25
                      35
   34 359 738 368
                              0.000 000 000 014 551 915 228 366 851 806 640 625
                       36
   68 719 476 736
 137 438 953 472
                       37
                               \textbf{0.000} \ \ \textbf{000} \ \ \textbf{000} \ \ \textbf{007} \ \ \textbf{275} \ \ \textbf{957} \ \ \textbf{614} \ \ \textbf{183} \ \ \textbf{425} \ \ \textbf{903} \ \ \textbf{320} \ \ \textbf{312} \ \ \textbf{5}  
                              0.000 000 000 003 637 978 807 091 712 951 660 156 25
 274 877 906 944
                       38
                             0.000 000 000 001 818 989 403 545 856 475 830 078 125
 549 755 813 888
                      39
                             0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
. 099 511 627 776
                      40
```

APPENDIX F

HEXADECIMAL-DECIMAL CONVERSION TABLES

From hex: locate each hex digit in its corresponding column position and note the decimal equivalents. Add these to obtain the decimal value.

From decimal: (1) locate the largest decimal value in the table that will fit into the decimal number to be converted, and (2) note its hex equivalent and hex column position. (3) Find the decimal remainder. Repeat the process on this and subsequent remainders.

Note: Decimal, hexadecimal, (and binary) equivalents of all numbers from 0 to 255 are listed on panels 9 – 12.

Γ	HEXADECIMAL COLUMNS											
	6		5		4		3		2		1	
HEX	= DEC	HE)	(= DEC	HEX	= DEC	HEX	= DEC	HEX	= DEC	HEX	= DEC	
0	0	0	0	0	0	0	0	0	0	0	0	
1	1,048,576	1	65,536	1	4,096	1	256	1	16	1	1	
2	2,097,152	2	131,072	2	8,192	2	512	2	32	2	2	
3	3,145,728	3	196,608	3	12,288	3	768	3	48	3	3	
4	4,194,304	4	262,144	4	16,384	4	1,024	4	64	4	4	
5	5,242,880	5	327,680	5	20,480	5	1,280	5	80	5	5	
6	6,291,456	6	393,216	6	24,576	6	1,536	6	96	6	6	
7	7,340,032	7	458,752	7	28,672	7	1,792	7	112	7	7	
8	8,388,608	8	524,288	8	32,768	8	2,048	8	128	8	8	
9	9,437,184	9	589,824	9	36,864	9	2,304	9	144	9	9	
Α	10,485,760	Α	655,360	A	40,960	Α	2,560	A	160	A	10	
В	11,534,336	В	720,896	В	45,056	В	2,816	В	176	В	11	
c	12,582,912	C	786,432	C	49,152	C	3,072	C	192	C	12	
D	13,631,488	D	851,968	D	53,248	D	3,328	D	208	D	13	
E	14,680,064	E	917,504	E	57,344	E	3,584	E	224	E	14	
F	15,728,640	F	983,040	F	61,440	F	3,840	F	240	F	15	
	0123		4567		0123	4	567	0	1 2 3	4 5	6 7	
	ВУТ	Ε			BY	TE			ВУ	TE		

Hexadecimal Decimal 000 to FFF 0000 to 4095

In the table, the decimal value appears at the intersection of the row representing the most significant hexadecimal digits (16^2 and 16^1) and the column representing the least significant hexadecimal digit (16^0).

Example:	C21 ₁₆	=	310510	
Dadinpie.	02116		010010)
	HEX	0	1	2
	C0	3072	3073	3074
	C1	3088	3089	3090
	C2	3104	3105	3106
	C3	3120	3121	3122

The table provides for direct conversion of hexadecimal and decimal numbers in these ranges:

	0	1	2	3	4	5	6	7 .	8	9	Α	В	С	D	E	F
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E	0000 0016 0032 0048 0064 0080 0096 0112 0128 0144 0160 0176 0192 0208 0224 0240	0001 0017 0033 0049 0065 0081 0097 0113 0129 0145 0161 0177 0193 0209 0225 0241	0002 0018 0034 0050 0066 0082 0098 0114 0130 0146 0162 0178 0194 0210 0226 0242	0003 0019 0035 0051 0067 0083 0099 0115 0131 0147 0163 0179 0195 0211 0227 0243	0004 0020 0036 0052 0068 0084 0100 0116 0132 0148 0164 0180 0196 0212 0228 0244	0005 0021 0037 0053 0069 0085 0101 0117 0133 0149 0165 0181 0197 0213 0229 0245	0006 0022 0038 0054 0070 0086 0102 0118 0134 0156 0166 0182 0198 0214 0230 0246	0007 0023 0039 0055 0071 0087 0103 0119 0135 0151 0167 0183 0199 0215 0231	0008 0024 0040 0056 0075 0088 0104 0120 0136 0158 0168 0184 0200 0216 0232 0248	0009 0025 0041 0057 0073 0089 0105 0121 0137 0153 0169 0185 0201 0217 0233 0249	0010 0026 0042 0058 0074 0090 0106 0122 0138 0154 0170 0186 0202 0218 0234 0250	0011 0027 0043 0059 0075 0091 0107 0123 0139 0155 0171 0187 0203 0219 0235 0251	0012 0028 0044 0060 0076 0092 0108 0124 0140 0156 0172 0188 0204 0220 0236 0252	0013 0029 0045 0061 0077 0093 0109 0125 0141 0157 0173 0189 0205 0221 0237 0253	0014 0030 0046 0062 0078 0094 0112 0158 0174 0190 0206 0222 0238 0254	0015 0031 0047 0063 0079 0095 0111 0127 0143 0159 0175 0191 0207 0223 0239 0255
	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E	0256 0272 0288 0304 0320 0336 0352 0368 0384 040 0416 0432 0448 0464 0480	0257 0273 0289 0305 0321 0337 0359 0385 0401 0417 0433 0449 0465 0481 0497	0258 0274 0290 0306 0322 0338 0354 0370 0386 0402 0418 0434 0450 0466 0482 0498	0259 0275 0291 0307 0323 0339 0355 0371 0387 0403 0419 0435 0451 0467 0483 0499	0260 0276 0292 0308 0324 0345 0372 0388 0404 0420 0436 0452 0468 0484 0500	0261 0277 0293 0309 0325 0341 0357 0373 0389 0405 0421 0437 0453 0469 0485 0501	0262 0278 0294 0310 0326 0345 0374 0390 0406 0422 0438 0454 0470 0486 0502	0263 0279 0295 0311 0327 0343 0359 0375 0391 0402 0423 0439 0455 0471 0487 0503	0264 0280 0296 0312 0328 0340 0376 0392 0408 0424 0440 0456 0472 0488 0504	0265 0281 0297 0313 0329 0345 0361 0377 0499 0425 0441 0457 0473 0489 0505	0266 0282 0298 0314 0330 0346 0362 0378 0394 0412 0426 0442 0458 0474 0490 0506	0267 0283 0299 0315 0331 0347 0363 0379 0395 0411 0427 0443 0459 0475 0491	0268 0284 0300 0316 0332 0348 0364 0380 0496 0428 0428 0444 0460 0476 0492 0508	0269 0285 0301 0317 0333 0349 0365 0381 0397 0413 0429 0445 0461 0477 0493 0509	0270 0286 0302 0318 0334 0350 0366 0382 0398 0414 0430 0446 0462 0478 0494 0510	0271 0287 0303 0319 03351 0367 0383 0399 0415 0447 0463 0475 0511
	J	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
20 21 22 23 24 25 26 27 28 29 2A	0512 0528 0544 0560 0576 0592 0608 0624 0640 0656 0672	0513 0529 0545 0561 0577 0593 0609 0625 0641	0514 0530 0546 0562 0578 0594 0610 0626 0642 0658	0515 0531 0547 0563 0579 0595 0611 0627 0643	0516 0532 0548 0564 0580 0596 0612 0628 0644	0517 0533 0549 0565 0581 0597 0613 0629	0518 0534 0550 0566 0582 0598 0614 0630	0519 0535 0551 0567 0583 0599 0615 0631	0520 0536 0552 0568 0584 0600 0616 0632	0521 0537 0553 0569 0585 0601 0617	0522 0538 0554 0570 0586 0602 0618	0523 0539 0555 0571 0587 0603 0619	0524 0540 0556 0572 0588 0604 0620	0525 0541 0557 0573 0589 0605 0621	0526 0542 0558 0574 0590 0606 0622	0527 0543 0559 0575 0591 0607 0623 0639
2B 2C 2D 2E 2F	0688 0704 0720 0736 0752	0673 0689 0705 0721 0737 0753	0674 0690 0706 0722 0738 0754	0659 0675 0691 0707 0723 0739 0755	0660 0676 0692 0708 0724 0740 0756	0645 0661 0677 0693 0709 0725 0741 0757	0646 0662 0678 0694 0710 0726 0742 0758	0647 0663 0679 0695 0711 0727 0743 0759	0648 0664 0680 0696 0712 0728 0744 0760	0633 0649 0665 0681 0697 0713 0729 0745 0761	0634 0650 0666 0682 0698 0714 0730 0746 0762	0635 0651 0667 0683 0699 0715 0731 0747 0763	0636 0652 0668 0684 0700 0716 0732 0748 0764	0637 0653 0669 0685 0701 0717 0733 0749 0765	0638 0654 0670 0686 0702 0718 0734 0750 0766	0655 0671 0687 0703 0719 0735 0751 0767
2B 2C 2D 2E	0688 0704 0720 0736	0689 0705 0721 0737	0674 0690 0706 0722 0738	0675 0691 0707 0723 0739	0660 0676 0692 0708 0724 0740	0661 0677 0693 0709 0725 0741	0646 0662 0678 0694 0710 0726 0742	0647 0663 0679 0695 0711 0727 0743	0648 0664 0680 0696 0712 0728 0744	0649 0665 0681 0697 0713 0729 0745	0650 0666 0682 0698 0714 0730 0746	0651 0667 0683 0699 0715 0731 0747	0652 0668 0684 0700 0716 0732 0748	0637 0653 0669 0685 0701 0717 0733 0749	0654 0670 0686 0702 0718 0734 0750	0671 0687 0703 0719 0735 0751

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4F	1024 1040 1056 1072 1088 1104 1120 1136 1152 1168 1184 1200 1216 1232 1248	1025 1041 1057 1073 1089 1105 1121 1137 1153 1169 1185 1201 1217 1233 1249 1265	1026 1042 1058 1074 1090 1106 1122 1138 1154 1170 1186 1202 1218 1234 1250 1266	1027 1043 1059 1075 1091 1107 1123 1139 1155 1171 1187 1203 1219 1235 1251 1267	1028 1044 1060 1076 1092 1108 1124 1140 1156 1172 1188 1204 1220 1236 1252 1268	1029 1045 1061 1077 1093 1125 1141 1157 1173 1189 1205 1221 1237 1253 1269	1030 1046 1062 1078 1094 11126 1142 1158 1174 1190 1206 1222 1238 1254 1270	1031 1047 1063 1079 1095 1111 1127 1143 1159 1175 1191 1207 1223 1239 1255 1271	1032 1048 1064 1080 1096 1112 1128 1144 1160 1176 1192 1208 1224 1240 1256 1272	1033 1049 1065 1081 1113 1129 1145 1161 1177 1193 1209 1225 1241 1257 1273	1034 1050 1066 1082 1098 1114 1130 1146 1162 1178 1194 1210 1226 1242 1258 1274	1035 1051 1067 1083 1099 1115 1131 1147 1163 1179 1195 1211 1227 1243 1259 1275	1036 1052 1068 1084 1106 1116 1132 1148 1164 1180 1212 1228 1244 1260 1276	1037 1053 1069 1085 1101 1117 1133 1149 1165 1181 1197 1213 1229 1245 1261 1277	1038 1054 1070 1086 1102 1118 1134 1150 1166 1182 1198 1214 1230 1246 1262 1278	1039 1055 1071 1087 11087 11135 1151 1167 1183 1199 1215 1231 1247 1263 1279
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E	1280 1296 1312 1328 1344 1360 1376 1392 1408 1424 1440 1456 1472 1488 1504	1281 1297 1313 1329 1345 1361 1377 1393 1409 1425 1441 1457 1473 1489 1505	1282 1298 1314 1330 1346 1362 1378 1394 1410 1426 1442 1458 1474 1490 1506	1283 1299 1315 1331 1347 1363 1379 1395 1411 1427 1443 1459 1475 1491 1507 1523	1284 1300 1316 1332 1348 1364 1386 1412 1428 1444 1460 1476 1492 1508 1524	1285 1301 1317 1333 1349 1365 1381 1397 1413 1429 1445 1461 1477 1493 1509 1525	1286 1302 1318 1334 1350 1366 1382 1414 1430 1446 1462 1478 1494 1510	1287 1303 1319 1335 1351 1367 1383 1399 1415 1431 1447 1463 1479 1495 1511	1288 1304 1320 1336 1352 1368 1384 1400 1416 1432 1448 1464 1480 1496 1512	1289 1305 1321 1337 1353 1369 1385 1401 1417 1433 1449 1465 1481 1497 1513 1529	1290 1306 1322 1338 1354 1376 1402 1418 1434 1456 1466 1482 1498 1514	1291 1307 1323 1339 1355 1371 1403 1419 1435 1451 1467 1483 1499 1515	1292 1308 1324 1340 1356 1372 1388 1404 1420 1436 1452 1468 1484 1500 1516 1532	1293 1309 1325 1341 1357 1373 1389 1405 1421 1437 1453 1469 1485 1501 1517 1533	1294 1310 1326 1342 1358 1374 1390 1406 1422 1438 1454 1470 1486 1502 1518 1534	1295 1311 1327 1343 1359 1375 1391 1407 1423 1439 1455 1471 1487 1503 1519 1535
	0	1	2	3	4	5	6 **	7	8	9	Α	В	С	D	E	F
60 61 62 63 64 65	1536 1552 1568 1584 1600 1616	1537 1553 1569 1585 1601 1617	1538 1554 1570 1586 1602 1618	1539 1555 1571 1587 1603 1619	1540 1556 1572 1588 1604 1620	1541 1557 1573 1589 1605 1621	1542 1558 1574 1590 1606	1543 1559 1575 1591 1607	1544 1560 1576 1592 1608	1545 1561 1577 1593 1609	1546 1562 1578 1594 1610	1547 1563 1579 1595 1611	1548 1564 1580 1596 1612	1549 1565 1581 1597	1550 1566 1582 1598 1614	1551 1567 1583 1599 1615
66 67 68 69 6A 6B 6C 6D 6E 6F	1632 1648 1664 1680 1696 1712 1728 1744 1760 1776	1633 1649 1665 1681 1697 1713 1729 1745 1761 1777	1634 1650 1666 1682 1698 1714 1730 1746 1762 1778	1635 1651 1667 1683 1699 1715 1731 1747 1763 1779	1636 1652 1668 1684 1700 1716 1732 1748 1764 1780	1637 1653 1669 1685 1701 1717 1733 1749 1765 1781	1622 1638 1654 1670 1686 1702 1718 1734 1750 1766 1782	1623 1639 1655 1671 1687 1703 1719 1735 1751 1767 1783	1624 1640 1656 1672 1688 1704 1720 1736 1752 1768 1784	1625 1641 1657 1673 1689 1705 1721 1737 1753 1769 1785	1626 1642 1658 1674 1690 1706 1722 1738 1754 1770 1786	1627 1643 1659 1675 1691 1707 1723 1739 1755 1771 1787	1612 1628 1644 1660 1676 1692 1708 1724 1740 1756 1772 1788	1613 1629 1645 1661 1677 1693 1709 1725 1741 1757 1773	1630 1646 1662 1678 1694 1710 1726 1742 1758 1774	1631 1647 1663 1679 1695 1711 1727 1743 1759 1775 1791
66 67 68 69 6A 6B 6C 6D 6E	1648 1664 1680 1696 1712 1728 1744 1760	1649 1665 1681 1697 1713 1729 1745 1761	1650 1666 1682 1698 1714 1730 1746 1762	1651 1667 1683 1699 1715 1731 1747 1763	1636 1652 1668 1684 1700 1716 1732 1748 1764	1637 1653 1669 1685 1701 1717 1733 1749 1765	1638 1654 1670 1686 1702 1718 1734 1750 1766	1639 1655 1671 1687 1703 1719 1735 1751 1767	1624 1640 1656 1672 1688 1704 1720 1736 1752 1768	1641 1657 1673 1689 1705 1721 1737 1753 1769	1626 1642 1658 1674 1690 1706 1722 1738 1754 1770	1627 1643 1659 1675 1691 1707 1723 1739 1755 1771	1628 1644 1660 1676 1692 1708 1724 1740 1756 1772	1629 1645 1661 1677 1693 1709 1725 1741 1757 1773	1630 1646 1662 1678 1694 1710 1726 1742 1758 1774	1631 1647 1663 1679 1695 1711 1727 1743 1759 1775

6 2177 2178 2 2193 2194 8 2209 2210
2225 2226 2221 2242 2257 2258 2273 2274 2289 2290
2226 2242 2258 2274
:
2387 2403 2419 2435 2451 2467 2483
2483 248 2499 250 2515 253 2531 253 2547 254
3
2561 2579 2591 2611 2621
2643 2659 2675 2691 2707 2723 2739 2755 2771 2787 2803
2659 2675 2691 2707 2723 2739 2755 2771 2787

	J	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CC	3072 3088 3104 3120 3136 3152 3168 3184 3200 3216 3232 3248 3264 3286 3296 3312	3073 3089 3105 3121 3137 3153 3169 3185 3201 3217 3233 3249 3265 3281 3297 3313	3074 3090 3106 3122 3138 3154 3170 3186 3202 3218 3234 3250 3266 3282 3298 3314	3075 3091 3107 3123 3135 3171 3187 3203 3217 3235 3251 3267 3283 3299 3315	3076 3092 3108 3124 3140 3156 3172 3188 3204 3236 3236 3252 3268 3284 3300 3316	3077 3093 3109 3125 3141 3157 3173 3189 3205 3221 3237 3253 3269 3285 3301 3317	3078 3094 3110 3126 3142 3158 3174 3190 3206 3222 3238 3254 3270 3286 3302 3318	3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319	3080 3096 3112 3128 3146 3176 3192 3208 3224 3240 3256 3272 3288 3304 3308	3081 3097 3113 3129 3145 3161 3177 3193 3209 3225 3241 3257 3273 3283 3283 3293 321	3082 3098 3114 3130 3146 3178 3194 3210 3226 3258 3274 3290 3306 3322	3083 3099 3115 3131 3147 3163 3179 3195 3211 3227 3243 3259 3275 3291 3307 3307	3084 3100 3116 3132 3148 3160 3196 3212 3228 3224 3260 3276 3292 3308	3085 3101 3117 3133 3149 3165 3181 3197 3213 32245 3245 3247 3293 3309 3325	3086 3102 3118 3134 3156 3182 3198 3214 3236 3246 3246 3278 3294 3310 3326	3087 3103 3119 3135 3151 3167 3183 3199 3215 3231 3247 3263 3279 3295 3311 3327
				2	4	5	6	7	8	9	A	В	C C	D	E	55 <u>2</u> ,
DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF	3328 3344 3360 3376 3392 3408 3424 3445 3472 3488 3504 3502 3536 3552 3568	1 3329 3345 3361 3377 3393 3409 3425 3445 3473 3489 3505 3521 3537 3553 3569	2 3330 3346 3362 3378 3394 3410 3426 3458 3474 3490 3506 3522 3538 3554 3570	3 3331 3347 3363 3379 3395 3411 3427 3443 3459 3475 3491 3507 3523 3539 3555 3571	3332 3348 3364 3380 3396 3412 3428 3444 3460 3476 3492 3508 3524 3540 3556 3572	3333 3349 3365 3381 3397 3413 3429 3445 3461 3477 3493 3509 3525 3541 3557 3573	3334 3356 3366 3382 3398 3414 3430 3446 3478 3478 3510 3526 3526 3574	3335 3351 3367 3383 3399 3415 3431 3447 3463 3479 3495 3511 3512 3543 3559 3575	3336 3356 3368 3384 3400 3416 3432 3448 3464 3480 3512 3512 3544 3560 3576	3337 3353 3369 3385 3401 3417 3433 3449 3465 3481 3497 3513 3513 3529 3545 3561 3577	3338 3354 3370 3386 3402 3418 3450 3466 3482 3498 35140 35162 3578	3339 3351 3371 3387 3403 3419 3435 3451 3467 3483 3499 3515 3513 3547 3563 3579	3340 3356 3372 3388 3404 3420 3452 3468 3452 3468 3500 3516 3532 3548 3564 3580	3341 3357 3373 3389 3405 3421 3437 3453 3469 3485 3501 3517 3513 3549 3565 3581	3342 3358 3374 3390 3406 3422 3438 3454 3470 3486 3502 3518 3534 3550 3566 3582	3343 3359 3375 3391 3407 3423 3439 3455 3471 3487 3503 3519 3551 3567 3583
	j	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE	3584 3600 3616 3632 3648 3664 3696 3712 3728 3744 3760 3776 3792 3808 3824	3585 3601 3617 3633 3645 3665 3681 3697 3713 3725 3745 3761 3777 3793 3809 3825	3586 3602 3618 3636 3666 3682 3714 3730 3746 3762 3778 3794 3810 3826	3587 3603 3619 3635 3651 3667 3683 3699 3715 3747 3763 3747 3763 3779 3811 3827	3588 3604 3620 3636 3652 3668 3700 3716 3732 3748 3764 3780 3796 3812 3828	3589 3605 3621 3637 3653 3669 3685 3701 3717 3733 3749 3765 3781 3797 3813 3829	3590 3606 3622 3638 3654 3670 3686 3702 3718 3750 3766 3782 3798 3814 3830	3591 3607 3623 3639 3655 3671 3687 3703 3719 3735 3751 3767 3783 3799 3815 3831	3592 3608 3624 3640 3656 3672 3688 3704 3720 37368 3752 3768 3784 3800 3816 3832	3593 3609 3625 3641 3657 3689 3705 3721 3737 3753 3769 3785 3801 3817 3833	3594 3610 3626 3642 3658 3674 3690 3706 3722 3738 3754 3770 3786 3802 3818 3834	3595 3611 3627 3643 3659 3675 3691 3707 3723 3755 3771 3787 3803 3819 3835	3596 3612 3628 3648 3660 3676 3676 3724 3740 3756 3778 3788 3804 3820 3836	3597 3613 3629 3645 3661 3677 3693 3725 3741 3757 3773 3789 3805 3821 3837	3598 3614 3630 3646 3662 3678 3694 3710 3726 3742 3758 37740 3806 3822 3838	3599 3615 3631 3647 3663 3679 3695 3711 3727 3743 3759 3775 3791 3807 3823 3839
	Ú	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
F0 F1 F2 F3 F4 F5 F6 F7	3840 3856 3872 3888 3904 3920 3936 3952	3841 3857 3873 3889 3905 3921 3937 3953	3842 3858 3874 3890 3906 3922 3938 3954	3843 3859 3875 3891 3907 3923 3939 3955	3844 3860 3876 3892 3908 3924 3940 3956	3845 3861 3877 3893 3909 3925 3941 3957	3846 3862 3878 3894 3910 3926 3942 3958	3847 3863 3879 3895 3911 3927 3943 3959	3848 3864 3880 3896 3912 3928 3944 3960	3849 3865 3881 3897 3913 3929 3945 3961	3850 3866 3882 3898 3914 3930 3946 3962	3851 3867 3883 3899 3915 3931 3947 3963	3852 3868 3884 3900 3916 3932 3948 3964	3853 3869 3885 3901 3917 3933 3949 3965	3854 3870 3886 3902 3918 3934 3950 3966	3855 3871 3887 3903 3919 3935 3951 3967

NOTES NOTES NO	OTES NOTES NOTES	NOTES NOTES	NOTES NOTES NOTE	S NOTES NOTES NOTES
	•			

•				

2650 SIMULATOR MANUAL

CONTENTS

I	INTRODU	JCTION														. 3
П	SIMULAT	OR OPE	ERATION	J.,												. 5
	GENE	RAL														. 5
	SIMUL	ATED F	ROCESS	OR S	TAT	E										. 5
	SIMUL	ATED N	/IEMORY													. 5
	SIMUL	ATED I	NPUT/O	JTPU ⁻	T IN	ST	RU	СТ	101	٧S						. 6
Ш	USER CO	MMANE	os													. 7
	GENER	RAL .														. 7
	COMM	AND FO	RMATS													. 8
	COMM	AND DE	SCRIPTI	ONS												.11
IV	SIMULAT	OR DIS	PLAY (L	ISTIN	G)					•	•			•	•	.27
APP	ENDIX A	COMM	1AND SU	ММА	RY											.32
APP	ENDIX B		R MESSA													.33
APP	ENDIX C	SIMUI	ATOR F	RESTR	RICT	101	NS									.35
APP	ENDIX D	SIMUL	ATOR F	RUN P	REP	AR	:AT	10	N							36

opyright April 1975 Signetics Corporation

ignetics Corporation reserves the right to make changes in the products described in this book in order to improve design or erformance.

I INTRODUCTION

The 2650 Simulator is a FORTRAN program which allows a user to simulate the execution of his program without utilizing the 2650 processor.

The Simulator executes a 2650 program by maintaining its own internal FORTRAN storage registers to describe the 2650 program itself, the microprocessor registers, the ROM/RAM memory configuration, and the input data to be read dynamically from I/O devices. Multiple simulations of the same program may be executed during a single simulation run. In addition, statistical timing information may be generated.

The Simulator requires as input both the program object module produced by the 2650 Assembler and a deck of user commands. It produces a listing of the user's commands, executes the program and prints ("displays") both static and dynamic information as requested by the user's commands.

II SIMULATOR OPERATION

GENERAL

Once the Simulator is loaded and started, it performs the following actions:

- Presets each register in simulated memory to a "HALT" instruction. Thus, if the user's program attempts to branch to some undefined area of memory, the current execution of the simulated program is terminated and only relevant data is printed.
- Reads and stores the user's commands. These commands control the performance of the Simulator during program execution. They are stored in a simulator table for reference before, during, and after execution.
- Loads the 2650 object module into simulated memory.
- Starts the simulated program. The simulated program is started at the address specified in the START command. If no START command is submitted, the program is started in the location specified in the END statement of the simulated program (see Assembler manual). If no location is specified in the END statement, the Simulator starts in location 0.
- Oversees the execution of each instruction. Before an instruction is executed, the Simulator checks the address of the instruction and the address of the referenced memory location to see if either of these addresses is referenced by any one of the user's commands. If so, the command is executed. The Simulator then executes the current instruction, updates all affected registers and retrieves the next instruction for execution.
- ▶ Terminates the simulated program. The simulation is terminated either by the execution of a "HALT" instruction, or by having executed a preset number of instructions or by having satisfied the conditions of the STOP, command.
- Once the execution of one simulation is complete, the Simulator prints any statistical timing information requested (STAT), and proceeds with the next simulation (TEND) or terminates itself (FEND).

SIMULATED PROCESSOR STATE

The Simulator maintains a number of FORTRAN integer cells which are used to simulate the microprocessor's state, i.e. the general purpose registers, the upper and lower program status bytes, the location counter or instruction address register (IAR), the address of the instruction referenced and the contents of the location referenced.

These simulated registers and status bits may be displayed dynamically, INSTR., REFER., TRACE.) i.e., while the simulated program is executing. Also the general purpose registers and the status bytes may be altered dynamically (SETR., SETP.).

SIMULATED MEMORY

The Simulator maintains a 2048 cell FORTRAN integer array which is used to simulate read-write random access memory.

It is possible to configure parts of this memory into a ROM-RAM environment by using the SROM Command. If part of the simulated memory is set to Read-Only and an instruction attempts to store data into that memory segment, the Simulator bypasses storing the data, prints a warning message and continues with the next program instruction.

Using Simulator commands, the user may change parts of memory before the program executes (PATCH) and he may display parts of memory dynamically (DUMP.).

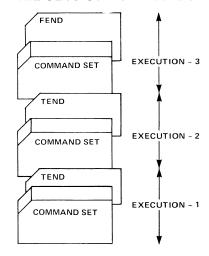
The simulated memory is smaller in many cases than the total memory size of the user's physical system. This restriction encourages the construction of modular programs. Because the simulated memory is smaller than a 2650 page, it is not possible to fully test programs which utilize the 2650 paging system, i.e., programs larger than 8192 bytes.

SIMULATED INPUT/OUTPUT INSTRUCTIONS

The Simulator maintains a 200-byte First In, First Out (FIFO) buffer to store the data read from a simulated input device. This buffer must be preset by the user command, INPUT.

When any 2650 input instruction is simulated (REDE, REDC, REDD), the Simulator accesses the buffer. If there is data in the buffer, the next byte of data is inserted in the simulated register specified by the input instruction. If the buffer contents have been exhausted, a warning message is displayed on the simulator listing.

To simulate the execution of any 2650 output instruction (WRTE, WRTC, WRTD), the Simulator takes the data byte from the register specified in the output instruction and displays it along with the address of the output instruction.


III USER COMMANDS

GENERAL

The 2650 Simulator accepts commands which specify how the program is to run and what data is to be recorded.

In any one Simulator run, the user may specify that his program be executed any number of times. The user submits a new set of commands for each execution. The final command set is followed by a final end card (FEND), while all prior command sets are terminated with a temporary end card (TEND) (Illust. III-1).

ILLUSTRATION III-1 THREE SETS OF COMMANDS

Within any one command set, the user may specify:

- That the program execution start at a specific memory location (START).
- That the execution of the program be complete either when the number of instructions executed equals a specified number (LIMIT) or when the instruction at a specific address executes (STOP.) or when the simulated program itself executes a "HALT" instruction.
- That statistics be displayed at the end of execution (STAT). The Simulator accumulates a count of the total number of instructions executed, the number of each type of instruction executed, and the total number of 2650 machine cycles expended. This information provides a measure of efficiency by indicating how many 1-, 2-, or 3-byte instructions were executed and may be used to calculate program timings.
- That certain areas of simulated memory be designated as Read-Only (SROM) and are therefore inaccessible to any memory write operation.
- That the contents of memory be initialized with specific data (PATCH).
- That a FIFO (First In, First Out) buffer be used to simulate data read from I/O devices (INPUT).
- That the processor state be recorded whenever a specific memory location executes (INSTR.), whenever a specific memory location is referenced (REFER.), or whenever any instruction executes which lies within a specified range of memory addresses (TRACE.). The processor state consists of the location counter, the instruction referenced and its contents, the upper and the lower program status bytes, and the contents of all the general purpose registers.

- That an area of memory be dumped whenever an instruction at a specific memory location executes (DUMP.).
- That certain general purpose registers (SETR.) or the program status bytes (SETP.) be set dynamically, i.e., whenever a specific memory location executes.
- That comments (**) be interspersed between control cards.

Some of these commands execute dynamically, i.e., when an instruction at a specific memory location executes or when that location is referenced. Since the simulator storage capacity limits the total number of locations which may be retained simultaneously (while a program is executing), a total of 30 memory locations may be specified on all the "dynamic" commands submitted for any one execution, i.e., in any one command set. These dynamic commands are identified by a trailing period (.), e.g., "STOP.". This period is treated as a field separator, i.e., it is not treated as part of the command name by the Simulator and is therefore optional. The description for each dynamic command identifies which of its parameters count toward the 30 "dynamic" command limit, i.e., the limit of 30 memory locations.

In addition, the number of DUMP. commands is limited to five (5); the number of SETR. commands is limited to four (4); the number of SETP. commands is limited to two (2); and the number of data read on all INPUT cards in one command set is limited to 200.

All "dynamic commands" are executed *before* the simulated instruction is executed.

For those commands which accept only one set of parameters (LIMIT, SROM, START) only the last set of parameters encountered is used.

COMMAND FORMATS

Illustration III-2 contains a list of the commands, their parameters and a brief description of the commands themselves. In addition, the Simulaton treats as a comment card, any card with two consecutive asterisks (**) starting in column 1.

The Simulator accepts information in card image form. The entire card is read in FORTRAN "A" format. A command must be complete on one card as continuation cards are not allowed. Comments may appear in any order within a command set.

The command name starts in column 1 and must appear as shown, except for the optional period.

The field of characters which lies between the command name and its parameters or between the parameters themselves is called a field separator A field separator may contain any number of characters, but none of these characters may be hexadecimal characters (0-9, A-F). For the sake of clarity in all the examples, the following field separators are used to indicate the following functions:

Field Separator

Function

Identifies a command which counts toward the "dynamic" command limit.

blank (s) Separate a command from its parameters.

() Encloses optional parameters.

; Separates one set of parameters from another.

Separates one parameter from another within a set of parameters.

indicates that multiple parameters or sets of parameters are legal. If a period flags a command, each of its parameter sets counts toward the "dynamic" command limit. E.g., the following sets of commands are identical:

1. INST. 100 INST. 200

2. INST. 100; 200

The parameters themselves must be hexadecimal numbers (0-9, A-F). The following labels identify parameters in Illustration III-2:

LOC

Location or address of an instruction which is to be executed or the address of data which is to be referenced.

NO

A number of data, e.g., the total number of instructions

to be executed.

FWA

First Word Address of some area of memory.

LWA

Last Word Address of some area of memory.

VALUE

The value to which some location is to be set.

R0, R1 . . . R6

General Purpose Registers 0-6.

?SL

Identifies Lower Program Status Byte.

PSU

Identifies Upper Program Status Byte.

ILLUSTRATION III-2 COMMAND SUMMARY

COMMAND NAME	PARAMETERS	DESCRIPTION
DUMP.	LOC, FWA-LWA (;; LOC, FWA-LWA)	Display the area of memory, FWA-LWA, ever the instruction at LOC executes.
FEND	None	Execute the last simulation and terminate entire run.
INPUT	VALUE(; ; VALUE)	Define the data to be read by simulated instructions.
INSTR.	$LOC(; \dots; LOC)$	Display the processor registers whenever instruction at LOC executes.
LIMIT	NO	Specify the total number of instructions exec
PATCH	LOC,VALUE(; ;LOC,VALUE)	Initialize each memory location, LOC, to VA
REFER.	LOC(; ;LOC)	Display the processor register whenever the struction at LOC is referenced by an instruction.
SETP.	LOC(,PSL=VALUE) (,PSU=VALUE)	Set the program status byte (lower and/or u to VALUE whenever the instruction at executes.
SETR.	LOC(,R0=VALUE)(R6=VALUE)	Set the general purpose registers to V^{A} whenever the instruction at LOC executes.
SROM	FWA-LWA	Specify the boundaries of Read-Only Mer
START	LOC	Start the simulated program execution at
STAT	None	Display instruction statistics at end of pre execution.
STOP.	$LOC(; \dots; LOC)$	Terminate the program execution when tl struction at LOC executes.
TEND	None	Execute the last simulation and prepare to the User Commands for the next simul
TRACE.	FWA-LWA(; ; FWA-LWA)	Display the processor registers whenever struction executes, which lies within the a memory, FWA-LWA.

COMMAND DESCRIPTIONS

The following command descriptions are alphabetized by command name. As previously discussed all parameters are entered in hexadecimal notation (0-9, A-F). All address parameters (LOC, FWA, LWA) are limited to the size of simulated memory.

DUMP. DUMP SIMULATED MEMORY

This command causes the Simulator to display selected portions of memory whenever the location counter matches LOC.

Each LOC counts as one "dynamic" command. The total number of "dynamic" commands is limited to thirty (30). The total number of LOC's submitted in DUMP. commands is limited to five (5).

DUMP. LOC, FWA-LWA(; . . . ; LOC, FWA-LWA)

Where:

DUMP. is the command name.

LOC is the address of the 2650 instruction at which the dump occurs.

FWA is the first address of the area to be dumped.

LWA is the last address of the area to be dumped. LWA must

be larger than FWA.

Example:

DUMP.

5A,0-3FF 100-11A-21A

DUMP.

EO-400-4FF

Note: More data may be dumped than was specified since the FWA dumped always has a least significant digit of 0, e.g. 30, 100, etc. Similarly, LWA always has a least significant digit of F, e.g. 3F, 10F, etc.

FEND FINAL END COMMAND

This command signals the Simulator that the preceding commands complete the directives for the final simulator run. After FEND is read, the Simulator performs the last simulation and comes to its final termination.

FEND

Where:

FEND — specifies the command name.

Example:

START 1A TRACE 0, 100

TEND

START AA PATCH 11, C2

FEND

INPUT DEFINE DATA FOR INPUT

This command loads data into a FIFO storage buffer from which the same data is used to supply I/O instructions with input data. The first data point specified becomes the first one accessed by a 2650 read instruction. The last point specified becomes the last one accessed. Should the buffer become empty during the simulated execution, an error message is printed, the nput register remains unchanged and the simulation continues.

Any number of these command cards may be submitted as long as the total number of data specified in one run does not exceed the size of the FIFO storage buffer (200).

INPUT VALUE(;...;VALUE)

Where: INPUT — specifies the command name.

VALUE — specifies a 2-digit hexadecimal value.

Example: INPUT 0, 1, 2, 3, 10, 1A, FF

INSTR. INSTRUCTION TRACE

This command sets a break point at the specified address. When the instruction at this address executes, the Simulator prints out the internal state of the simulated processor. The break point occurs before the instruction is executed.

Each address specified in an INSTR. command counts as one "dynamic" command.

INSTR. LOC(; ...; LOC)

Where: IN

INSTR. — specifies the command.

LOC - specifies the address for a break point. The address

must be within simulated memory.

Example:

INSTR. 1CE, 1A, 22

INSTR. 123-200-5E

INSTR. 74

LIMIT THE NUMBER OF INSTRUCTIONS EXECUTED

This command determines how many instructions will be executed. If the number given in the LIMIT command is exceeded before the instruction specified by a STOP. command executes or before a 2650 HALT instruction is simulated, the Simulator terminates the current program operation.

Without this command, the Simulator assumes a limit of 1000_{10} instructions. The maximum LIMIT which may be specified is determined by the maximum integer constant of the FORTRAN compiler used.

LIMIT NO

Where:

LIMIT — specifies the command.

NO — is a number which determines the maximum number of

instructions to be executed.

Example:

LIMIT 200

LIMIT 2F

PATCH PATCH SIMULATED MEMORY

This command alters the contents of memory before a simulation run. It may be used to alter the contents of any byte in memory and overrides load information in the object module for the duration of one simulation run.

Any number of these commands may be given in a simulator command stream.

PATCH LOC, VALUE(; . . . ; LOC, VALUE)

Where: PATCH — specifies the command.

LOC — specifies the simulated memory address which is to

be changed.

VALUE - specifies a 2-digit hexadecimal number to be

stored at LOC.

Example: PATCH 0, 1F 1, 0 2. 5E

PATCH 102, EE

REFER. MEMORY REFERENCE TRACE

This command causes a break point to occur whenever one of the specified addresses is referenced by a simulated instruction. During the break point, the Simulator prints out the internal state of the simulated processor. The lata byte of immediate addressing instructions is handled like an ordinary operand address.

Each address specified in a REFER. command counts as one "dynamic" command.

REFER. LOC(;LOC...;LOC)

Where: REFER. — specifies the command.

LOC - specifies the effective operand address for a break

point. The address must be within simulated memory.

Example: REFER. 3FF/21/18E

REFER. 200

REFER. 5, 50, 22F

SETP. SET PROGRAM STATUS SYTE

The SETP. command dynamically alters the upper and/or the lower program status bytes. The specified program status byte is set when the address parameter supplied in the command, LOC, equals the location counter.

A SETP. command must set at least one program status byte. Up to two SETP. commands may be given in a simulator command stream. Each LOC submitted counts as one "dynamic" command.

The PSL and PSU may be entered in any order.

SETP. LOC(,PSL=VALUE) (,PSU=VALUE)

Where: SETP. — specifies the command.

 ${
m LOC}$ — specifies the simulated execution address where the

program status byte is to be set.

PSL — specifies that a value is to be entered into PSL. PSU — specifies that a value is to be entered into PSU.

VALUE - specifies the 2-digit hexadecimal value to be

entered into the program status byte.

Example: SETP. 5A PSL=05

SETP. 10E, PSL=01 PSU=00

SETR. SET GENERAL PURPOSE REGISTER

This command dynamically sets the general purpose registers during simulated program execution. Using this command, any or all of the general purpose registers can be set when the location counter value is equal to the address parameter, LOC, supplied in this command.

A SETR. command without parameters is not permitted. Up to four SETR. commands may be given in a simulator command stream. Each LOC counts as one "dynamic" command.

Register identifiers may appear in any order.

SETR. LOC(,R0=VALUE)...(,R6=VALUE)

Where:

SETR. — specifies the command.

LOC — specifies the simulated execution address where the registers are to be set.

R0 — indicates the general purpose register to be set. R0 R1 always refers to general purpose register 0. R1, R2, and R2 R3 specify the registers in register bank zero. R4, R5 and R6 specify R1, R2, and R3 in register bank one.

R4 R5 R6

VALUE — specifies the 2-digit hexadecimal value to be stored in the selected register.

Example:

SETR. 10A R1=3F, R2=00, R3=5

SETR. 2F3 R0=FF, R5=00

SROM DEFINE THE BOUNDARIES OF READ ONLY MEMORY

This command allows the user to simulate a Read Only/Read Write Memory environment. Whenever a 2650 instruction attempts to store data in the area defined as Read Only, a warning message is printed on the simulation listing. The data is not actually stored, but the simulation run continues.

SROM FWA-LWA

Where: SROM - specifies the command.

FWA - specifies the first address of the simulated ROM

area.

LWA — specifies the last address of the simulated ROM area. LWA must be greater in value than the FWA. The addresses

specified are inclusive.

Example: SROM 100-FF

START START SIMULATION

This command specifies the address at which simulated execution begins. The address specified in the START command supersedes the start address in the load object module. The start address in the load object module is set by an END statement during program assembly and is used by the Simulator if no START command is given (see the 2650 Assembler Language Manual for the END statement).

START LOC

Where:

START — specifies the command.

LOC - specifies a start address for the program to be

simulated.

Example:

START 10A

START 2

STAT DISPLAY INSTRUCTION STATISTICS

This command causes a list of 2650 instructions with the number of times each was executed to be printed out at the end of the simulation run.

STAT

Where:

STAT — specifies the command.

STOP. STOP SIMULATED EXECUTION

This command terminates the current simulated instruction execution when the location counter matches the command argument, LOC.

Each LOC counts as one "dynamic" command.

STOP. LOC(; ...;LOC)

Where:

STOP. — specifies the command.

 ${
m LOC}$ — specifies the instruction address at which simulated execution ceases.

TEND TEMPORARY END COMMAND

This command signals the Simulator that the preceding commands complete the directives for a simulator run. After the TEND is read, the Simulator begins simulated execution of the 2650 program. Because TEND is a temporary end, the Simulator assumes that there is another command stream following it. The last command stream in a simulation run must be terminated with a FEND (final end) command.

TEND

Where: TENI

TEND — specifies the command.

Example:

PATCH 01, 15 0A, FF

TEND

START 100

PATCH 01, E2 0A, FF

FEND

TRACE. TRACE PROGRAM FLOW

This command causes break points to occur at each instruction within an area of memory. The user specifies two addresses. If the simulated processor accesses an instruction at an address that falls between the specified addresses, the Simulator prints out the internal state of the simulated processor.

Each set of FWA,LWA counts as one "dynamic" command.

TRACE. FWA-LWA(; ...; FWA-LWA)

Where: TRACE. — specifies the command.

FWA — specifies from what address the trace is in effect.

LWA — specifies to what address the trace is in effect. LWA must be larger in value than FWA. The addresses specified

are inclusive.

Example: TRACE. 0-15F, 250-3FF

TRACE. 1-A, 3FF-40A

TRACE. 10-1A 50-5A 60-7A

V SIMULATOR DISPLAY (LISTING)

As the Simulator reads each command set, it prints the card images of the command set and then executes the program. During program execution the following commands result in some form of display:

DUMP. INSTR. REFER. TRACE.

DUMP. results in the display of an entire area of memory while the last three commands result in some form of trace, i.e., a display of the processor state:

Instruction address register (IAR) or location counter

Instruction executed (INST)

Instruction referenced or effected (EADDR)

Contents of the instruction referenced or effected (EADDR)

Program status byte upper (PSU)

Program status byte lower (PSL)

General purpose registers (R0, R1, R2, R3, R4, R5, R6)

Illustrations IV-1 through IV-4 contain the printout or display output from one Simulator run. Illustration IV-1 shows the first command set, which contains commands to:

- Start at location 0 (START)
- Initialize locations 55-5F, locations 61-6B and location 19 (PATCH)
- Dump locations 55-77 whenever either location 0 or location 3 executes (DUMP)
- Trace locations 14-1A (TRACE)

Illustrations IV-1 and IV-2 show the results of the first command set:

- A dump of locations 55-77. Note that a larger area is dumped than was specified.
- ▶ 30 traces
- A final dump of locations 55-77

When the program execution for the first command set is complete, the Simulator reports:

- The number of machine cycles executed
- The number of instructions executed

Illustration IV-3 shows the second command set. It is exactly the same as the first command set except that it initializes locations 12 and 33 instead of location 19.

The output of the second command set is just like the output of the first command set except that it results in 33 traces, not 30.

TRACE COMMAND TAP INST		EADER (EADER)	PSBU PSBL	RO R1 R2 R3 R4 R5 R6	
0014 CCMI+0	04	0018 000A	01 40	00 07 00 07 00 00 00	
TRACE CEMMAND			200000	The second secon	
TAP INST		EACOR (EADER)	PSBU PSBL	FO R1 R2 P3 P4 R5 R6	
0014 LCCA+0	0061.3	0067 0002	01 61	02 06 00 07 00 00 00	
TRACE COMMAND					
TAR INST		EAFOR (EADOR)	PSHU PSHL	RO R1 R2 R3 94 K5 R6	
0017 ACDA,0	0055,1	CC5B C004	01 61	02 36 30 36 00 00 00	
IAR INST		FADER (EADDR)	PSBU PSBL	FO R1 R2 R3 R4 P5 R6	
0014 CCM1.0	ΩΛ	CCIR 0004	01 40	06 36 00 06 00 00 00	
TRACE CEMMAND					
TAP INST		EADER (FADER)	PSBIJ PSRL	PO R1 R2 P3 R4 F5 R6	
0014 (CEA.0	0061.3	CC66 0003	01 80	C6 05 00 06 00 00 00	
TRACE COMMAND TAR INST		FACOR (FADOR)	PSBU PSPL	PO R1 R2 R3 R4 R5 R6	
0017 ACDA.0	0055.1	CC54 0005	01 40	63 05 00 05 00 00 00	
TRACE CEMMAND	003311	2000	01	4. 4. 00 00 00 00	
TAR INST		EADDR (EADER)	PSBU PSBL	80 R1 R2 R3 R4 R5 R6	
COLA CCMI.O	0.4	CC18 900A	01 40	OR 05 00 05 00 00 00	
TRACE COMMAND			2008 70000000000000000000000000000000000	SECULIAR SECU	
IAP INST	State of the second	EAPDR (EADDR)	PSRIJ PSHL	RO R1 R2 R3 R4 R5 R6	
CO14 LCCA+9 TRACE COMMAND	0061.3	0065 0001	01 80	CB 04 00 05 00 00 00	
TAR INST		FADOR (FADOR)	PSBU PSBL	FO R1 R2 R3 R4 R5 R6	
0017 ADEA.0	0055,1	0055 0003	01 40	01 04 00 04 00 00 00	
TRACE COMMAND	000000	0000		01 04 00 04 00 00 00	
IAP INST		EADER (EADER)	PSBU PSBL	RO R1 R2 R3 R4 R5 R6	
C.1M37 4100	04	CC18 303A	01 40	C4 04 00 04 00 00 00	
THACE COMMAND					
IAP INST		EALER (EADER)	PSBU PSPL	FO R1 R2 R3 R4 H5 R6 .	
TRACE CUMMAND	0061.3	2064 0001	01 80	C4 03 00 04 00 00 00	
TAR INST		FADUR (EADOR)	PSBU PSEL	FO P1 R2 P3 R4 R5 R6	
0017 ATTA . D	0055.1	CG58 0002	01 40	01 03 90 03 00 00 00	
TRACE COMMAND					
IAF INST		FADER (EADER)	PSBH PSbL	FO R1 P2 R3 R4 P5 R6	
GOIA CCMI.O	O.A.	CO1H 000A	01 40	03 03 00 03 00 00 00	
TRACE COMMAND		A STATE OF THE STA	ACCU ACC	50000 00 00 00 00	
TAR INST	0361.3	FACOR (EADDR)	PSRU PSRL 01 80	63 J2 OO O3 JO UU OJ	
TRACE COMMAND	0301+34-	CC02 3070	01 00	03 02 00 03 00 00 00	
TAR INST		FADER (FADER)	PSBU PSBI	FO R1 R2 F3 R4 P5 R6	
CO17 ACCA.O	0055.1	0057 0002	01 00	00 02 00 02 00 00 00	
TRACE CCMMAND					
TAR INST		EARDR (FARER)	PSBU PSHL	RO R1 R2 R3 R4 R5 R6	
0014 CCMI.0	OA	CC1B 0004	01 40	02 02 00 02 00 00 00	
THACE COMMAND		FACOR (EADER)	PSBII PSBL	FO R1 R2 F3 P4 F5 R6	
0014 LFE4.0	0051.3	CC62 3030	01 80	02 01 00 02 00 00 00	
TRACE COMMAND	2331171	3632	Control of	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TAR INST		CAJUR (EADER)	PSRU PSRL	FO R1 R2 P3 R4 R5 R6	
0017 ACEA.0	0055.1	CC56 0001	01 00	CO 01 00 01 00 00 00	

TARCE CCUMANIO

ILAR

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

(1-57)

NO. OF TASTRUCTIONS EXECUTER = 232

NO. OF TASTRUCTIONS EXECUTER = 73

```
# START 00

PATCY 33.0 Seal STAR 58.2 Sex.3

PATCY 33.0 Seal STAR 58.3 Sex.3 S
```

TRACE CEMMAND		EACOR (EADOR)	PSBU PSBL	RO R1 R2 R3 R4 R5 R6
CO14 CCM1.0	O.A.	CC19 0004	01 48	CD 08 00 07 00 00 00
TRACE CCMMAND		FADOR (EADER)	PSBU PSBL	FO R1 R2 R3 R4 P5 R6
0014 LCEA.U	0061,3,-	CQ67 0002	01 69	C3 07 00 07 00 00 00
TRACE COMMAND				
IAR INST	0054.1	CC58 3004	P\$80 PSRL 01 69	FO R1 R2 R3 R4 R5 R6
TRACE COMMAND	0054,1	CC36 0004	01 07	£2 51 55 56 50 00 00 0
IAP INST		EADOR (EADOR)	PSBU PSBL	PO R1 R2 R3 P4 R5 R6
001A CCMI.0	04	CC1R 0004	01 48	C7 07 00 06 00 00 00
TRAGE CCMMAND		EACOR (EADER)	PSBU PSBL	PO R1 R2 R3 R4 R5 R6
0014 LCCA+0	0061,3,-	C(66 0003	01 93	07 06 00 06 00 00 00
TRACE CEMMAND				
TAR INST	0054.1	EALOR (EADOR) COSA 0005	PSBU PSRL 01 48	RO R1 R2 R3 R4 R5 R6
TRACE CEMMAND	0094.1	0014 0000	0. 40	
IAP INST		EACOR (EADOR)	PSBU PSEL	P3 R1 R2 R3 R4 R5 P6
0014 CCM1.0	01	CO18 0004	01 48	C8 06 00 05 00 00 00
TRACE COMMAND		EACOR (EADOR)	PSBU PSPL	60 R1 R2 P3 R4 R5 36
0014 LCUA.0	0061.3	CC65 0001	01 88	08 05 00 05 00 00 00
TRACE SCHMAND				
1AR 1NST 0017 ATTA-0	0054.1	CC55 0003	PSBU PSBL 01 48	FO R1 42 R3 R4 R5 R6 01 05 00 04 00 00 00
TRACE COMMAND	00541	1139 0003	01 48	01 03 00 04 00 00 00
TAF INST		EADDR (EADDR)	PSRU PSAL	PO R1 R2 R3 K4 P5 R6
001A CEMI.0	0.0	001H 000A	01 48	04 05 00 04 00 00 00
TRACE CEMMAND		EAFER (EADOR)	PSBU PSBL	PO R1 R2 P3 R4 F5 R6
0014 LOPA.0	0361,3,-	CC64 0001	01 88	C4 34 30 04 03 00 00
TRACE COMMAND				
TAP INST		EADER (EADER) COSE 0002	PSBU PSPL 01 48	PO R1 R2 R3 R4 R5 R6 . 01 04 00 03 00 00 00
COLT ADDA+0	0054.1	C036 0032	01 46	2 01 04 00 03 10 03 80
IAR INST		SADDR (EADDR)	PSBU PSHL	FO R1 P2 P3 R4 R5 R6
0014 CTMI+0	04	CO18 300A	01 48	C3 04 00 03 00 00 00
TRACE CCMMAND		FACOR (EADER)	PSAU PSAL	FJ R1 RZ R3 R4 P5 R6
0014 LCCA.0	0061,3,-	0000	01 88	03 03 00 03 00 00 00
TRACE COMMAND			15.0	
TAP INST	225.	EACOR (EAGOR)	PSBU PSRL OI OF	RO R1 R2 R3 R4 R5 R6 CO D3 OO D2 DO DO DO
COLT ACCA-D	0354.1	CC57 3002	01 0	60 00 00 00 00
IAP INST		EATER (EADER)	PSBU PSPL	FO R1 R2 R3 R4 R5 R6
0014 CCM1.0	0.4	CC18 300A	C1 48	02 03 00 02 00 00 00
TRACE COMMAND		FADOR (EARER)	PSBU PSPE	80 RL PZ R3 R4 K5 R6
3014 LCCA.0	0061.3	0000	01 88	C2 02 00 02 00 00 00
TRACE CUMMAND			DEDLI DEP	
TAR INST	0054,1	EACDR (EADD9) CC56 0001	PSBH PSBL 01 08	RO R1 R2 R3 R4 R5 R6 CO OZ OO O1 OO OO OO
AUDA-U	0054+1	1,056 0001	01 30	57 52 55 51 60 00 00

TRACE COMMAND					
IAR INST		COLB OCOA	PS8U PS8L 01 48	PO R1 R2 R3 R4 R5 R6 01 02 00 01 00 00 00	
IAR INST 0014 LEDA.O TRACE COMMAND	0061,3,-	CC61 0000	PSBU PSBL 01 88	FO R1 R2 R3 R4 R5 R6 01 01 00 01 00 00 00	
TRACE CCMMAND		FADER (FADER) CC55 CODO	PS8U PSBL 01 08	FO R1 R2 R3 R4 H5 R6 CO O1 OO OO OO OO	
JAR INST		EADER (FADDR) CCIB JOOA	PSBU PSBL 01 08	RO R1 R2 R3 R4 P5 R6 CO 01 00 00 00 00 00	

NO. OF MACHINE CYCLES EXECUTES - 252

NO. OF INSTRUCTIONS EXECUTES - 79

APPENDIX A

COMMAND SUMMARY

COMMAND NAME	PARAMETERS	DESCRIPTION
DUMP.	LOC, FWA-LWA(; ;LOC, FWA-LWA)	Display the area of memory. FWA-LWA, v ever the instruction at LOC executes.
FEND	None	Execute the last simulation and terminate entire run.
INPUT	VALUE(; ; VALUE)	Define the data to be read by simulated instructions.
INSTR.	$LOC(; \dots; LOC)$	Display the processor registers whenever instruction at LOC executes.
LIMIT	NO	Specify the total number of instructions exec
PATCH	$LOC, VALUE(; \dots; LOC, VALUE)$	Initialize each memory location, LOC, to VA
REFER.	LOC(; ;LOC)	Display the processor register whenever the struction at LOC is referenced by an instruction.
SETP.	LOC(,PSL=VALUE) (,PSU=VALUE)	Set the program status byte (lower and/or u to VALUE whenever the instruction at executes.
SETR.	LOC(,R0=VALUE)(R6=VALUE)	Set the general purpose registers to VA whenever the instruction at LOC executes.
SROM	FWA-LWA	Specify the boundaries of Read-Only Mer
START	LOC	Start the simulated program execution at
STAT	None	Display instruction statistics at end of pre execution.
STOP.	LOC(;; LOC)	Terminate the program execution when the struction at LOC executes.
TEND	None	Execute the last simulation and prepare to the User Commands for the next simulation.
TRACE.	FWA-LWA(; ; FWA-LWA)	Display the processor registers whenever a struction executes, which lies within the almemory, FWA-LWA.

APPENDIX B

ERROR MESSAGES

Whenever the Simulator detects an error in the User Commands, it prints one of the following error messages:

ERROR IN OBJECT MODULE CARD NUMBER

the 2650 object module is incorrectly formatted.

INPUT DATA TABLE OVERFLOW

an INPUT command attempted to expand the simulated data input buffer beyond its limit (200 bytes).

PARAMETER OUT OF RANGE

a User Command either contains an address which is outside the bounds of simulated memory or the command defines a datum which is larger than one byte (255_{10}) .

SIM MEMORY EXCEEDED

a 2650 object module loads into an area which is outside of simulated memory.

SYNTAX ERROR IN COMMAND

the command parameters are either missing or in error.

TOO MANY COMMANDS

the maximum number of dynamic commands has been exceeded.

TOO MANY DUMP COMMANDS

the maximum number of DUMP commands has been exceeded.

TOO MANY SET REGISTER COMMANDS

the maximum number of SETR. commands has been exceeded.

TOO MANY SET PSB COMMANDS

the maximum number of SETP. commands has been exceeded.

UNRECOGNIZED COMMAND

a command has been read which is unknown to the Simulator.

UNEXPECTED END OF FILE

either the object module or the set of User Commands is missing, or one of their respective card decks is incorrectly formatted, or the FEND command is missing.

Whenever the Simulator detects an error while the simulated program is executing it prints one of the following error messages:

ADDRESS OUT OF RANGE

an instruction attempted to access a location which lies outside of simulated memory.

INSUFFICIENT INPUT DATA

a I/O instruction attempted to read another datum from the input data buffer (INPUT) after all the data from the buffer had been read. The simulated input register remains unchanged i.e., the instruction is essentially ignored, and program execution continues.

LC= ATTEMPT TO STORE INTO ROM

an instruction attempted to store data into the area designated as ROM (SROM).

LC EXCEEDS MEMORY

the program attempted to execute a memory location which lies outside of simulated memory.

NO KNOWN OPCODE

the program attempted to execute a memory location which did not contain a valid instruction. Either the program was modified during execution or the program is attempting to execute data.

APPENDIX C

SIMULATOR RESTRICTIONS

SIMULATOR RESTRICTIONS

- 1. The simulated memory reserved by the Simulator for program storage is limited to 2048 bytes.* Thus, the Simulator will accept only programs or program segments which fit into this area. This implies that the 2650 paging facility (page size = 8192 bytes) cannot be simulated.
- 2. Some User Commands are limited in the amount of entries they may accept.

COMMAND	LIMIT
DUMP.	5 LOC's
SETR.	4 LOC's
SETP.	2 LOC's
INPUT	200 VALUE's
All "dynamic" commands	30 LOC's (for TRACE, count 1
	for each set of FWA-LWA)

^{*}This may be expanded to 8192 bytes if sufficient memory is available.

APPENDIX D

SIMULATOR RUN PREPARATION

In order to prepare a program for execution by the Simulator, the programmer:

- 1. Codes a program in 2650 Assembly Language.
- 2. Assembles the program until no assembly errors occur.
- 3. Obtains the object module and listing for the assembled program.
- 4. Generates command cards using addresses from the listing of the assembled program.
- 5. Submits the object module and the command cards in that order for a Simulator run.